标题: 运用OCBA法改善求解随机性专案网路最佳化资源分配问题之研究
Solving the Optimal Resource Allocation Problem in Stochastic Activity Networks Using an Optimal Computing Budget Allocation Approach
作者: 朱怡桦
Chu, Yi-Hua
姚铭忠
林仁彦
Yao, Ming-Jong
Lin, Jen-Yen
运输与物流管理学系
关键字: 专案网路;资源分配;基因演算法;蒙地卡罗模拟法;最佳模拟预算分配法;Activity networks;Resource Allocation;Genetic Algorithm;Monte Carlo Simulation;Optimal Computing Budget Allocation Approach
公开日期: 2010
摘要: 根据专案需求而做调整之复合性专案网路资源分配问题(Stochastic Adaptive Resource Allocation in Multimodal Activity networks Problem, SRAMAP) 多年来已被广泛的研究。并且许多学者提出相当多不同的解法,例如:动态规划法(dynamic programming, DP)、蒙地卡罗模拟法(Monte Carlo simulations, MCS)、基因演算法(genetic algorithm, GA)等。而蒙地卡罗模拟法为一种经常使用于搜寻评估候选解的方法,但由于其收敛速率相当慢且相当耗时,特别是针对大规模之专案网路问题时,MCS相当无效率且存在大量的计算负担。在本研究中,我们建议并提出一套结合基因演算法、蒙地卡罗模拟法与最佳模拟预算分配法(Optimal Computing Budget Allocation, OCBA)之演算法,期望能改善求解SRAMAP问题之效率与效益。在演化过程中,根据所产生的染色体之评估适应值,我们使用OCBA法进行MCS最佳预算分配。根据本研究随机产生之数值测试实验,本研究证明结合基因演算法、蒙地卡罗模拟法与最佳模拟预算分配法之演算法比传统的基因演算法或者是蒙地卡罗模拟法更具有效益。
The Stochastic Adaptive Resource Allocation in Multimodal Activity networks Problem (SRAMAP) has been studied for more than a decade. Researchers proposed different solution approaches, including dynamic programming, Monte Carlo simulations (MCS), genetic algorithm, etc., for solving the SRAMAP. Monte Carlo simulations (MCS), which are commonly employed for evaluating the obtained candidate solutions, make the solution approaches unattractive, especially for large-size problems because of its demanding computational load. In this study, we propose to a hybrid genetic algorithm (GA) with the Optimal Computing Budget Allocation (OCBA) Approach to improve for solving the SRAMAP. We utilize the OCBA approach for optimally allocating the computational budget for MCS as evaluating the fitness of the chromosomes in the evolutionary process. Based on our numerical experiments using randomly generated instances, we demonstrate the proposed GA with MCS and OCBA is more effective than the conventional GA or MCS .
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079832534
http://hdl.handle.net/11536/47844
显示于类别:Thesis