标题: 云端大型多人线上游戏游戏下基于负载预测之资源分配方法
SVM-based load prediction for resource allocation in
作者: 吴昭霖
王国祯
资讯学院资讯科技(IT)产业研发硕士专班
关键字: 云端计算;负载预测;大型多人线上游戏;类神经网路;资源分配;支持向量机;cloud computing;load prediction;MMOG;neural network;resource allocation;support vector machine
公开日期: 2010
摘要: 近年来大型多人线上游戏(MMOG)已成为主流游戏,其使用者超过数百万人。对大型多人线上游戏来说,值得研究的课题非常的多,其中又以资源分配为重要的研究课题之一。如何有效的进行资源分配使游戏可以正常运作,又可使其满足使用者之QoS,如让使用者满意之反应时间,是为产业与学界共同研究的课题。本论文利用支持向量机来进行资源预测并结合云端的资源分配,以便有效地进行资源分配以提升使用者之QoS。支持向量机能运算大量的资料并具备快速计算的能力,使其被广泛地运用在各种预测上。由于其预测准确率高于类神经网路,因此更能有效用于MMOG负载的预测。我们的方法是基于支持向量机于多伺服器架构下进行MMOG负载的预测,即利用每个地图区域的虚拟机器之历史负载量来预测该区域未来负载量的层级,从而进行有效的资源分配,以满足使用者反应时间的要求。实验结果显示,我们基于支持向量机的预测方法在预测准确率上比基于类神经网路的预测方法高12.24%,且其在虚拟机器的使用数量上也减少8%。
In recent years, massively multiplayer online games (MMOGs) have hundreds to thousands of active concurrent players so as to have become a popular research topic in academia and industry. MMOGs consume huge resources due to a massive number of players. To utilize resources efficiently, we integrate MMOGs with cloud computing environments. An MMOG game world is composed of game regions. MMOG load management allocates resources (i.e. virtual machines, VMs) to each game region. In this paper, we propose an SVM (support vector machine)-based load prediction scheme to first forecast cloud resources needed based on the loading class of each game region in an MMOG cloud. Then we allocate resources needed to achieve reasonable response time with less resources used. Simulation results show that the proposed SVM-based load prediction is 12.24% better than neural network-based load prediction in term of prediction accuracy. In addition, the proposed SVM-based load prediction reduces 8% of the number of VMs used compared with the neural network-based load prediction.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079890503
http://hdl.handle.net/11536/48948
显示于类别:Thesis


文件中的档案:

  1. 050301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.