Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, CYen_US
dc.contributor.authorChang, CCen_US
dc.contributor.authorChang, GJen_US
dc.date.accessioned2014-12-08T15:01:42Z-
dc.date.available2014-12-08T15:01:42Z-
dc.date.issued1997-06-10en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/490-
dc.description.abstractThis paper is a study of the hamiltonicity of proper interval graphs with applications to the guard problem in spiral polygons. We prove that proper interval graphs with greater than or equal to 2 vertices have hamiltonian paths, those with greater than or equal to 3 vertices have hamiltonian cycles, and those with greater than or equal to 4 vertices are hamiltonian-connected if and only if they are, respectively, 1-, 2-, or 3-connected. We also study the guard problem in spiral polygons by connecting the class of nontrivial connected proper interval graphs with the class of stick-intersection graphs of spiral polygons.en_US
dc.language.isoen_USen_US
dc.subjectproper interval graphen_US
dc.subjectHamiltonian path (cycle)en_US
dc.subjectHamiltonian-connecteden_US
dc.subjectguarden_US
dc.subjectvisibilityen_US
dc.subjectspiral polygonen_US
dc.titleProper interval graphs and the guard problemen_US
dc.typeArticleen_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume170en_US
dc.citation.issue1-3en_US
dc.citation.spage223en_US
dc.citation.epage230en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1997XF48000017-
dc.citation.woscount8-
Appears in Collections:Articles


Files in This Item:

  1. A1997XF48000017.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.