Title: 連續區間圖與螺旋多邊形的警衛問題
Consecutive Interval Graphs and Guard Problem in Spiral Polygon
Authors: 張勤振
Chin-Chen Chang
陳秋媛
Chiuyuan Chen
應用數學系所
Keywords: 區間圖 、連續 1's 性質 、警衛問題 、可見性 、螺旋多邊形 。;Interval graphs;the consecutive 1's property;guard ity;spiral polygon.
Issue Date: 1993
Abstract: 一無向圖 G 是區間圖的充分必要條件是 : G 的 maximal cliques 能被
排成一個次序 ,使得對於 G 中的每一頂點 v 而言 ,包含 v 的
maximal cliques 是連續的 。在這篇論文中 ,我們將介紹一些相交圖
,它們是區間圖的子集合 ,我們稱之為連續區間圖 。我們將証明 , 一
無向區間圖 G 是連續區間圖的充分必要條件是 : G 是連通圖而且不僅
G 的 maximal cliques 能被排成一個次序 ,使得對於 G 中的每一頂點
v 而言 ,包含 v 的 maximal cliques 是連續的 , 而且 G 的頂點也能
被排成一個次序 ,使得對於 G 中的每一 maximal clique A 而言 ,包
含於 A 中的頂點也是連續的 。連續區間圖有許多好的性質 ,而且可以
用來解決螺旋多邊形的警衛問題 。
An undirected graph G is an interval graph if and only if the
maximal cliques of G can be linearly ordered such that, for
every vertex v of G, the maximal cliques containing v occur
consecutively. In this thesis, we shall introduce a class of
intersection graphs, which is a subset of interval graphs; we
call them consecutive interval graphs. We shall prove that an
undirected graph G is consecutive interval graph if and only if
G is connected and not only the maximal cliques of G can be
linearly ordered such that, for every vertex v of G, the
maximal cliques containing v occur consecutively but also the
vertices of G can be linearly ordered such that, for every
maximal clique A of G, the vertices contained in A occur
consecutively. Consecutive interval graphs have many
interesting properties and can be used to solve the guard
problem in spiral polygons.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT820507004
http://hdl.handle.net/11536/58433
Appears in Collections:Thesis