標題: 連續區間圖與螺旋多邊形的警衛問題
Consecutive Interval Graphs and Guard Problem in Spiral Polygon
作者: 張勤振
Chin-Chen Chang
陳秋媛
Chiuyuan Chen
應用數學系所
關鍵字: 區間圖 、連續 1's 性質 、警衛問題 、可見性 、螺旋多邊形 。;Interval graphs;the consecutive 1's property;guard ity;spiral polygon.
公開日期: 1993
摘要: 一無向圖 G 是區間圖的充分必要條件是 : G 的 maximal cliques 能被 排成一個次序 ,使得對於 G 中的每一頂點 v 而言 ,包含 v 的 maximal cliques 是連續的 。在這篇論文中 ,我們將介紹一些相交圖 ,它們是區間圖的子集合 ,我們稱之為連續區間圖 。我們將証明 , 一 無向區間圖 G 是連續區間圖的充分必要條件是 : G 是連通圖而且不僅 G 的 maximal cliques 能被排成一個次序 ,使得對於 G 中的每一頂點 v 而言 ,包含 v 的 maximal cliques 是連續的 , 而且 G 的頂點也能 被排成一個次序 ,使得對於 G 中的每一 maximal clique A 而言 ,包 含於 A 中的頂點也是連續的 。連續區間圖有許多好的性質 ,而且可以 用來解決螺旋多邊形的警衛問題 。 An undirected graph G is an interval graph if and only if the maximal cliques of G can be linearly ordered such that, for every vertex v of G, the maximal cliques containing v occur consecutively. In this thesis, we shall introduce a class of intersection graphs, which is a subset of interval graphs; we call them consecutive interval graphs. We shall prove that an undirected graph G is consecutive interval graph if and only if G is connected and not only the maximal cliques of G can be linearly ordered such that, for every vertex v of G, the maximal cliques containing v occur consecutively but also the vertices of G can be linearly ordered such that, for every maximal clique A of G, the vertices contained in A occur consecutively. Consecutive interval graphs have many interesting properties and can be used to solve the guard problem in spiral polygons.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT820507004
http://hdl.handle.net/11536/58433
顯示於類別:畢業論文