标题: 连续区间图与螺旋多边形的警卫问题
Consecutive Interval Graphs and Guard Problem in Spiral Polygon
作者: 张勤振
Chin-Chen Chang
陈秋媛
Chiuyuan Chen
应用数学系所
关键字: 区间图 、连续 1's 性质 、警卫问题 、可见性 、螺旋多边形 。;Interval graphs;the consecutive 1's property;guard ity;spiral polygon.
公开日期: 1993
摘要: 一无向图 G 是区间图的充分必要条件是 : G 的 maximal cliques 能被
排成一个次序 ,使得对于 G 中的每一顶点 v 而言 ,包含 v 的
maximal cliques 是连续的 。在这篇论文中 ,我们将介绍一些相交图
,它们是区间图的子集合 ,我们称之为连续区间图 。我们将证明 , 一
无向区间图 G 是连续区间图的充分必要条件是 : G 是连通图而且不仅
G 的 maximal cliques 能被排成一个次序 ,使得对于 G 中的每一顶点
v 而言 ,包含 v 的 maximal cliques 是连续的 , 而且 G 的顶点也能
被排成一个次序 ,使得对于 G 中的每一 maximal clique A 而言 ,包
含于 A 中的顶点也是连续的 。连续区间图有许多好的性质 ,而且可以
用来解决螺旋多边形的警卫问题 。
An undirected graph G is an interval graph if and only if the
maximal cliques of G can be linearly ordered such that, for
every vertex v of G, the maximal cliques containing v occur
consecutively. In this thesis, we shall introduce a class of
intersection graphs, which is a subset of interval graphs; we
call them consecutive interval graphs. We shall prove that an
undirected graph G is consecutive interval graph if and only if
G is connected and not only the maximal cliques of G can be
linearly ordered such that, for every vertex v of G, the
maximal cliques containing v occur consecutively but also the
vertices of G can be linearly ordered such that, for every
maximal clique A of G, the vertices contained in A occur
consecutively. Consecutive interval graphs have many
interesting properties and can be used to solve the guard
problem in spiral polygons.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT820507004
http://hdl.handle.net/11536/58433
显示于类别:Thesis