标题: 高功率半导体雷射之功率效率与热议题研究
Studies on Power Conversion Efficiency and Thermal Issues of High Power Semiconductor Lasers
作者: 林佑龙
Lin, You Lung
林国瑞
Lin,Gray
电子研究所
关键字: 功率转换效率;功率饼图;元件热模拟;雷射晶粒封装;power conversion efficiency;power pie chart;thermal simulation;laser die bonding
公开日期: 2012
摘要: 本论文探讨半导体雷射元件热模拟、晶粒封装制程技术、功率转换效率计算的研究。在元件热模拟上,我们使用了四种不同的模型对半导体雷射与散热基座做模拟,模型分别为主动层热源、电流分布修正、温度参数修正、界面热阻的修正。模拟结果发现,未考虑后三项修正的主动层热源模型与考虑修正模型的温度差,在P side up 封装超过100℃,在P side down封装近80℃,这说明只单纯使用主动层热源计算热模拟,在高电流与雷射内部温度较高的情况下会有很大的误差。因此在半导体雷射元件在高电流及内部温度极高的状况下,不能忽略电流分布、温度参数的修正。
在晶粒封装制程技术上,半导体雷射封装大多使用AuSn的硬式焊料。此焊料需要良好的共晶温度与下压力才能为雷射元件提供最好的散热。在封装品质的检测上,一般都使用推离元件,观察表面成份来确定封装条件品质好坏,或者进行长时间的光性烧测实验。然而这样的方法除了会损坏元件之外,需要大量的时间分析。因此暂态热电阻量测提供了省时、且非破坏性的量测。
本论文中我们结合了封装条件与暂态热电阻量测完成了一种非破坏性检测封装品质优劣的方法。暂态热电阻提供了我们得知封装焊料界面热阻大小,并且能快速地得知每个封装条件的界面热阻值。我们使用最佳的封装条件,让封装前热饱和功率仅135mW的半导体雷射,得到了近瓦级操作的改善。封装后雷射元件在1000mA 连续操作下尚未热饱和,出光功率约830mW。
在功率转换效率的研究上,我们提供了最佳效率共振腔的分析与功率饼图的分析。我们证明了使用电流阻挡层的高功率大面积半导体雷射,提升了元件的功率转换效率最大值。另外我们从功率饼图上分析得知,高功率半导体雷射在临界电流条件差异性不大时,增加微分量子效率对于功率转换效率的改善是最佳的首选。
This thesis discusses thermal simulations of semiconductor laser devices, techniques of die bonding process, and studies of power conversion efficiency. In thermal simulations of semiconductor laser devices, we utilize four different models to simulate thermal distribution between semiconductor lasers and submount. These four models are successively considering heat sources in active region, calibration of current diffusion and joule heat, calibration of laser characteristic temperature, and calibration of interface thermal resistance between chip and submount. In our simulation results, we identify there are temperature differences over 100℃ in P-side-up packaging, and 80℃ in P-side-down packaging if we merely consider heat sources in active region other than considering these four factors. This result illustrates in thermal simulation, simply evaluating heat sources in active region will cause significant inaccuracy. Therefore, we can’t ignore other three factors whenever the semiconductor laser devices are operated at high injection current or their internal temperatures are extremely high.
In techniques of die bonding process, semiconductor lasers packaging are typically utilizing hard solder of AuSn. This kind of hard solder requires adequate bonding temperature and bonding force to provide best condition of heat dissipation in laser devices. Normally we use shear test to confirm packaging condition is good or bad by observing surface quality. However, such test will cause damage to the devices. On the other hand, if we want to confirm packaging condition via non-destructive test, we need long-period constant light output aging measurement. Owing to these drawbacks, we combine packaging condition and transient thermal resistance measurement to implement a non- destructive test confirming packaging quality. Transient thermal resistance provides the values of interface thermal resistance between chip and solder and rapidly tells us each interface thermal resistance corresponding to its packaging condition. The thermal rollover power of semiconductor laser is merely 135mW before packaging. By employing the optimized packaging condition, we get nearly 1W thermal rollover power improvement. The output power of semiconductor laser device is about 830mW operated under 1000mA continuously after packaging.
In studies of power conversion efficiency, we provide analyses of optimum cavity length for high power efficiency and power pie chart. We verify that implementing current blocking region design in high power broad area semiconductor lasers will enhance the maximum of power conversion efficiency of devices. Furthermore, we perceive whenever there are only minor differences in threshold current condition between high-power semiconductor lasers, increasing differential quantum efficiency is the best way to improve power conversion efficiency from the analysis of power pie chart.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079911562
http://hdl.handle.net/11536/49109
显示于类别:Thesis


文件中的档案:

  1. 156201.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.