标题: 利用少量惯性感测器监控人物动作之研究
Action Surveillance Using Sparse Wearable Inertial Sensors
作者: 林世佑
林奕成
资讯科学与工程研究所
关键字: 动作重建;感测器;k元树;Wii控制器;Motion reconstruction;Sensors;kd-tree;Wii remotes
公开日期: 2012
摘要: 利用从感测器取得的资料来重建动作已经是一个相当普遍的研究技术。在这篇论文当中,我们呈现一个流程图是藉由绑在使用者四肢跟躯干上的四到五只惯性感测器来重建整个人体动作。基于这些收集的资料,我们建立一个包含着十多万帧线上k元树的架构并从中取得最适当的动作片断来决定目前使用者的全身动作。然而由于少量且有杂讯的感测资料通常会造成我们判断动作的误差,因此有着发生动作之间不连续的可能性。为了防止这项限制,我们将运动领域概念来避免发生此情况,并能达到更为合体的动作转换,我们利用即时的动作合成机制将多个动作候补依据其比重关系来混和,使其能够重现出更为自然且平顺的动作,我们的主要目的是利用少量的惯性控制器来达到运用高昂仪器所作出的准确度,并且有着不受环境影响和自我屏蔽的限制。
Motion reconstruction from sensor data is a notable research field. In this thesis, we present a framework to reconstruct full-body human motion by four to five inertial sensors that attached to the user’s four limbs and torso. Based on the gathered data, we construct an online k-dimensional tree (kd-tree) index structure which consists of hundred thousands of frames, and find the most appropriate motion fragment as user’s current full-body motion. However, the sparse and noisy sensing data cause high ambiguity for our motion estimation. It then results in gaps between poses continuous. Consequently, we include the concept of motion fields for more reasonable motion transition. This run-time motion synthesis mechanism merges the candidates of the motion sequences by weighted combination, and generates natural and smooth motions.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079955517
http://hdl.handle.net/11536/50432
显示于类别:Thesis


文件中的档案:

  1. 551701.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.