完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 李致維 | en_US |
dc.contributor.author | Chih-Wei Lee | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | Chih-Wen Weng | en_US |
dc.date.accessioned | 2014-12-12T02:03:39Z | - |
dc.date.available | 2014-12-12T02:03:39Z | - |
dc.date.issued | 2003 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009122527 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/52413 | - |
dc.description.abstract | 代數方法在圖論上被廣泛的使用。如圖上的自同態群的研究,利用特徵值及線性代數的方法來探討圖的性質、以及與圖有關的多項式。這篇論文的目的主要是收集了已知的圖論上使用的代數方法。 | zh_TW |
dc.description.abstract | Algebraic methods provide many new and powerful ways in the study of graph theory. These include the study of the group of homomorphisms on graphs, the construction of graphs from a group, using the eigenvalue or other linear algebraic techniques in the study of graph theory and the study of polynomials associated with a graph. The purpose of this thesis is to collect the known results in graph theory with algebraic techniques involved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 連接矩陣 | zh_TW |
dc.subject | Laplacian矩陣 | zh_TW |
dc.subject | Adjacency matrix | en_US |
dc.subject | Laplacian | en_US |
dc.title | 圖論上代數方法的探討 | zh_TW |
dc.title | Algebraic Techniques in Graph Theory | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |