標題: 圖論上代數方法的探討
Algebraic Techniques in Graph Theory
作者: 李致維
Chih-Wei Lee
翁志文
Chih-Wen Weng
應用數學系所
關鍵字: 連接矩陣;Laplacian矩陣;Adjacency matrix;Laplacian
公開日期: 2003
摘要: 代數方法在圖論上被廣泛的使用。如圖上的自同態群的研究,利用特徵值及線性代數的方法來探討圖的性質、以及與圖有關的多項式。這篇論文的目的主要是收集了已知的圖論上使用的代數方法。
Algebraic methods provide many new and powerful ways in the study of graph theory. These include the study of the group of homomorphisms on graphs, the construction of graphs from a group, using the eigenvalue or other linear algebraic techniques in the study of graph theory and the study of polynomials associated with a graph. The purpose of this thesis is to collect the known results in graph theory with algebraic techniques involved.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009122527
http://hdl.handle.net/11536/52413
顯示於類別:畢業論文


文件中的檔案:

  1. 252701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。