Full metadata record
DC FieldValueLanguage
dc.contributor.authorGonchenko, S.en_US
dc.contributor.authorLi, M. -Ch.en_US
dc.date.accessioned2014-12-08T15:06:50Z-
dc.date.available2014-12-08T15:06:50Z-
dc.date.issued2010-06-01en_US
dc.identifier.issn1560-3547en_US
dc.identifier.urihttp://dx.doi.org/10.1134/S1560354710020061en_US
dc.identifier.urihttp://hdl.handle.net/11536/5356-
dc.description.abstractWe study the hyperbolic dynamics of three-dimensional quadratic maps with constant Jacobian the inverse of which are again quadratic maps (the so-called 3D H,non maps). We consider two classes of such maps having applications to the nonlinear dynamics and find certain sufficient conditions under which the maps possess hyperbolic nonwandering sets topologically conjugating to the Smale horseshoe. We apply the so-called Shilnikov's cross-map for proving the existence of the horseshoes and show the existence of horseshoes of various types: (2,1)- and (1,2)-horseshoes (where the first (second) index denotes the dimension of stable (unstable) manifolds of horseshoe orbits) as well as horseshoes of saddle and saddle-focus types.en_US
dc.language.isoen_USen_US
dc.subjectquadratic mapen_US
dc.subjectSmale horseshoeen_US
dc.subjecthyperbolic seten_US
dc.subjectsymbolic dynamicsen_US
dc.subjectsaddleen_US
dc.subjectsaddle-focusen_US
dc.titleShilnikov's Cross-map method and hyperbolic dynamics of three-dimensional H,non-like mapsen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S1560354710020061en_US
dc.identifier.journalREGULAR & CHAOTIC DYNAMICSen_US
dc.citation.volume15en_US
dc.citation.issue2-3en_US
dc.citation.spage165en_US
dc.citation.epage184en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000277098300006-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000277098300006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.