標題: PALINDROMIC EIGENVALUE PROBLEMS: A BRIEF SURVEY
作者: Chu, Eric King-wah
Huang, Tsung-Ming
Lin, Wen-Wei
Wu, Chin-Tien
應用數學系
Department of Applied Mathematics
關鍵字: Crack;Crawford number;Eigenvalue;Eigenvector;Matrix polynomial;Palindromic eigenvalue problem;Train vibration;SAW filter
公開日期: 1-六月-2010
摘要: The T-palindromic quadratic eigenvalue problem (lambda(2)B + lambda C + A)x = 0, with A, B,C is an element of C(nxn), C(T) = C and B(T) = A, governs the vibration behaviour of trains. Other palindromic eigenvalue problems, quadratic or higher order, arise from applications in surface acoustic wave filters, optimal control of discrete-time systems and crack modelling. Numerical solution of palindromic eigenvalue problems is challenging, with unacceptably low accuracy from the basic linearization approach. In this survey paper, we shall talk about the history of palindromic eigenvalue problems, in terms of their history, applications, numerical solution and generalization. We shall also speculate on some future directions of research.
URI: http://hdl.handle.net/11536/5362
ISSN: 1027-5487
期刊: TAIWANESE JOURNAL OF MATHEMATICS
Volume: 14
Issue: 3A
起始頁: 743
結束頁: 779
顯示於類別:期刊論文