完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:06:52Z-
dc.date.available2014-12-08T15:06:52Z-
dc.date.issued2010-06-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2009.12.024en_US
dc.identifier.urihttp://hdl.handle.net/11536/5376-
dc.description.abstractLet A be a contraction on a Hilbert space H. The defect index d(A) of A is, by definition, the dimension of the closure of the range of l - A*A. We prove that (1) d(An) <= nd(A) for all n >= 0, (2) if, in addition, A(n) converges to 0 in the strong operator topology and d(A) = 1, then d(An) = n for all finite n, 0 <= n <= dim H, and (3) d(A) = d(A)* implies d(An) = d(An)* for all n >= 0. The norm-one index k(A) of A is defined as sup{n >= 0 : parallel to A(n)parallel to = 1}. When dim H = m < infinity, a lower bound for k(A) was obtained before: k(A) >= (m/d(A)) - 1. We show that the equality holds if and only if either A is unitary or the eigenvalues of A are all in the open unit disc, d(A) divides m and d(An) = nd(A) for all n, 1 <= n <= m/d(A). We also consider the defect index of f(A) for a finite Blaschke product f and show that d(f(A)) = d(An), where n is the number of zeros off. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectContractionen_US
dc.subjectDefect indexen_US
dc.subjectNorm-one indexen_US
dc.subjectBlaschke producten_US
dc.titleDefect indices of powers of a contractionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2009.12.024en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume432en_US
dc.citation.issue11en_US
dc.citation.spage2824en_US
dc.citation.epage2833en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000276882500010-
dc.citation.woscount4-
顯示於類別:期刊論文


文件中的檔案:

  1. 000276882500010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。