Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, Yueh-Chengen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorShieh, Shih-Fengen_US
dc.contributor.authorWang, Weichungen_US
dc.date.accessioned2014-12-08T15:06:56Z-
dc.date.available2014-12-08T15:06:56Z-
dc.date.issued2010-05-01en_US
dc.identifier.issn0168-9274en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.apnum.2009.11.007en_US
dc.identifier.urihttp://hdl.handle.net/11536/5424-
dc.description.abstractThe continuation method is a useful numerical tool for solving differential equations to obtain multiform solutions and allow bifurcation analysis. However, when a standard continuation method is used to solve a type of time-independent m-coupled nonlinear Schrodinger (NLS) equations that can be used to model nonlinear optics, nearly singular systems arise in the computations of prediction and correction search directions and detections of bifurcations. To overcome the stability and efficiency problems that exist in standard continuation methods, we propose a new hyperplane-constrained continuation method by adding additional constraints to prevent the singularities while tracking the solution curves. Aimed at the 3-coupled DNLS equations, we conduct theoretical analysis to the solutions and bifurcations on the primal stalk solution curve. The proposed algorithms have been implemented successfully to demonstrate numerical solution profiles, energies, and bifurcation diagrams in various settings. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHyperplane-constrained continuation methoden_US
dc.subjectCoupled nonlinear Schrodinger equationsen_US
dc.subjectNumerical solutionsen_US
dc.subjectPrimal stalk solutionsen_US
dc.subjectBifurcation analysisen_US
dc.titleA hyperplane-constrained continuation method for near singularity in coupled nonlinear Schrodinger equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apnum.2009.11.007en_US
dc.identifier.journalAPPLIED NUMERICAL MATHEMATICSen_US
dc.citation.volume60en_US
dc.citation.issue5en_US
dc.citation.spage513en_US
dc.citation.epage526en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000278220100001-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000278220100001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.