標題: 競爭風險下雙維度治癒模式
Biavariate Cure Model under Competing Risk
作者: 許秋婷
Kor Chew Teng
王維菁
Dr. Weijing Wang
統計學研究所
關鍵字: 存活分析;治癒模式;混合模式;Copula模式;競爭風險;半母數模式;無母數模式;發病時間;擬概似函數;survival analysis;Cure model;mixture model;Copula model;Competing risk;Semiparametric model;Nonparametric model;Age of onset;pseudo-likelihood function
公開日期: 2003
摘要: 本篇論文提出二維治癒模式,可用來探討複雜疾病在“發病與否” (disease incidence)與“發病時間”(age onset)的家族群聚性,模式考慮了死亡為發病的競爭風險,因此帶因者有可能在生前不發病。文章採混合模式架構以描述以上二種關聯性,對於發病時間的聯合分配,文章中假設copula模式,並提出以二階段法估計參數。第一階段目標為估計邊際函數,我們同時考慮Kaplan-Meier無母數估計法和給予母數模式的MLE方法,其中利用了EM演算法處理缺失值以簡化估計問題。在第二階段中將所得邊際函數估計量代入“擬概似函數”(pseudo-likelihood function)中,求其極值可得相關參數之估計量。我們透過電腦模擬評估所提出方法在有限樣本之表現。
In this thesis, we propose a bivariate cure model which describes two types of association, namely “disease incidence” and “onset ages”, between family members. Our model provides a systematic way to incorporate the effect of death by treating it as a competing risk for disease occurrence. We use a copula model to describe the joint distribution of the onset times for a susceptible pair. Another copula model is imposed to describe the joint distribution of competing risks due to death for the pair. For a susceptible person, whether the disease will actually occur depends on the order of the latent onset age and the competing risk. The parameters are estimated via a two-stage estimation procedure. In stage 1, nuisance parameters are estimated. The association parameters of interest are estimated in the second stage based on a pseudo-likelihood function. The EM algorithm is employed in both stages as a way to simplify the likelihood estimation. Properties of the estimators are examined via simulations.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009126513
http://hdl.handle.net/11536/55490
Appears in Collections:Thesis


Files in This Item:

  1. 651301.pdf
  2. 651302.pdf
  3. 651303.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.