標題: | 某些擬線性橢圓型問題之強解的存在性 Existence results of strong solutions for certain quasilinear elliptic problems |
作者: | 余慧真 YU, HUI-ZHEN 郭滄海 GUO, CANG-HAI 應用數學系所 |
關鍵字: | 擬線性橢圓型;函數;強解 |
公開日期: | 1991 |
摘要: | 本論文研究下列在正則囿界區域Ω上之擬線性橢圓型問題: ╭ N │ __ ╭ u ╮ │ — > ─── │ a (x) ─── │+ g(x,u, u)=0 x Ω, │ ▔▔ x ╰ ij x ╯ < i,j=1 i j │ │ u│ =0 , │ Ω ╰ __ θ 其中a C□(Ω),│g(x,r,ξ)│<h(│r│)+C│ξ│ , h(│r│)= ij ▔ o(│r│□)。 首先,我們假設g滿足下列之“隨邊變號”條件: rg(x,r,ξ)+K(x)+sr□+t│ξ│□> 0 ▔ 8 其中K與s,t 分別為適當的函數與參數。若 0<θ<max{1,──}且 ▔ N+2 N 2,p 1,p 0<β<─── ,則可証得若存在一強解u W (Ω)∩W (Ω) 。同時,若 ▔ N+2 0 N 2,p 1,p 1 2,p p> ─ 則前者之所有W (Ω)∩W (Ω) ∩H (Ω) 解為W 囿界;若 2 0 0 2,p 1,p 1 2,p p> N 則後者之所有W (Ω)∩W (Ω) ∩H (Ω) 解為W 囿界;若 0 0 2,p 1,p 1 2,p p> N 則後者之所有W (Ω)∩W (Ω) ∩H (Ω) 解為W 囿界。 0 0 另外,我們考慮 g(x,u, u)=a□(x)u + f(x,u, u),其中β□> a□(x)> ▔ ▔ θ α□> 0 且│f(x,r,ξ)│< C□+ b(│r│)│ξ│ , 0<θ<2,則存在一強 ▔ ▔ 2,p 1,p 2,p 1,p 1 解u W (Ω)∩W (Ω)。同時,所有W (Ω)∩W (Ω) ∩H (Ω)∩ 0 0 0 ∞ 2,p L (Ω) 解為W 囿界。 |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT802507009 http://hdl.handle.net/11536/56360 |
Appears in Collections: | Thesis |