標題: 圓盤維度為二的平面圖其著色性質之研究
A STUDY OF THE THREE COLORABILITY OF PLANAR GRAPHS WITH DISK DIMENSION TWO
作者: 顏孟賢
Yen, Meng-Hsien
傅恆霖
Fu, Hung-Lin
應用數學系所
關鍵字: 平面圖, 點著色, 圓盤維度, 嵌入, 三角形間之距離, 三色問題;planar graphs, vertex coloring, disk dimension,embedding, distance of triangles, three color problem
公開日期: 1993
摘要: 令$G$為一平面圖。我們稱$G$是圓盤維度為二的,如果$G$的所有的頂點可
嵌入在兩個稱為圓盤的互斥環路上,而且所有$G$的邊不是落在此二圓盤之
邊界上就是落在此二圓盤之外部且邊與邊之間沒有交叉。將$d$定義為三
角形間的最短距離,也就是說,連接不同三角形之頂點的所有最短路徑之長
度之最小值。在本篇論文之中我們首先在第二章中瀏覽一些以前與三色問
題有關的結果,然後在第三章中我們證明了所有圓盤維度為二且$d \geq
1$之平面圖皆是頂點三可著色的。
Let $G$ be a planar graph. $G$ is called "with $disk$
$dimension$ two" if all vertices of $G$ can be embedded on two
disjoint cycles called $disks$, in which no edge lie in its
interiors and make no crossing. Defined $d$ as the minimum
distance of triangles, $i.e.$ the minimum length of shortest
paths joining vertices of different triangles. In this thesis,
we first study the 3-color problem in Chapter 2, and in Chapter
3 we show that if $G$ is a planar graph with disk dimension two
and $d \geq 1$ then $G$ is 3-colorable.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT820507023
http://hdl.handle.net/11536/58455
Appears in Collections:Thesis