標題: | 人工智慧中決策樹的最佳推導方法 Optimal Deduction Of Decision Trees For Machine Learning In Artificial Intelligence |
作者: | 劉育津 Liu, Yu-Chin 黎漢林 Li, Han-Lin 資訊管理研究所 |
關鍵字: | 機器學習;例舉式學習;決策樹;ID3演算法;C-MAX演算法;整數規劃;machine learning;learning form examples;decision tree;ID3 algorithm;C-MAXalgorithm;integer programming |
公開日期: | 1993 |
摘要: | 隨著專家系統的需求日益增加,如何使機器學習儼然成為一項重要的課題,目前有許多研究成功的提出學習的演算法,其中J. R. Quinlan提出的ID3演算法來產生決策樹十分著名。但此法在語意的表達上有先天上的限制,另一方面亦無法處理含有雜訊的資料。
本篇論文提出一個藉由0-1整數規劃產生決策樹的新方法(命名為C-MAX演算法),此法並可進一步導出只含一層的決策樹,同時它亦能提供一個處理雜訊資料的方法。最後本篇論文將ID3與C-MAX演算法針對決策樹的大小及所產出規劃的正確率和普及率做一比較,我們將可發現C-MAX可以獲得較佳的決策樹。 The algorithms for building knowledge-based systems by inductive inference from example have been demonstrated successfully in several researches. The ID3 algorithm is a well-known approach (proposed by J.R. Quinlan) to synthesizing decision trees that has been used in a variety of systems. But it lacks of powerful expression and ignores the uncertain data. This thesis proposes a new algorithm (named C-MAX algorithm) to establish decision trees by using 0-1 integer programming, and it can be further utilized to construct one-level trees. Meanwhile, the treatment for uncertain data is also considered in this new algorithm. Finally, this thesis provides the comparison between ID3 and C-MAX algorithm to show the size of decision trees can be much reduced as well as the accuracy and coverage rate can be upgraded. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT823396018 http://hdl.handle.net/11536/58618 |
Appears in Collections: | Thesis |