完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, Li-Yenen_US
dc.contributor.authorLing, Feng-Ien_US
dc.contributor.authorKao, Shin-Shinen_US
dc.contributor.authorCho, Hsun-Jungen_US
dc.date.accessioned2014-12-08T15:07:37Z-
dc.date.available2014-12-08T15:07:37Z-
dc.date.issued2010en_US
dc.identifier.issn0020-7160en_US
dc.identifier.urihttp://hdl.handle.net/11536/5993-
dc.identifier.urihttp://dx.doi.org/10.1080/00207160903315524en_US
dc.description.abstractThe honeycomb torus HT(m) is an attractive architecture for distributed processing applications. For analysing its performance, a symmetric generalized honeycomb torus, GHT(m, n, n/2), with m epsilon 2 and even n epsilon 4, where m+n/2 is even, which is a 3-regular, Hamiltonian bipartite graph, is operated as a platform for combinatorial studies. More specifically, GHT(m, n, n/2) includes GHT(m, 6m, 3m), the isomorphism of the honeycomb torus HT(m). It has been proven that any GHT(m, n, n/2)-e is Hamiltonian for any edge eE(GHT(m, n, n/2)). Moreover, any GHT(m, n, n/2)-F is Hamiltonian for any F={u, v} with uB and vW, where B and W are the bipartition of V(GHT(m, n, n/2)) if and only if n epsilon 6 or m=2, n epsilon 4.en_US
dc.language.isoen_USen_US
dc.subjectfault-toleranceen_US
dc.subjectgeneralized honeycomb torusen_US
dc.subjectgraph embeddingen_US
dc.subjectHamiltonian cycleen_US
dc.subjectinterconnection networksen_US
dc.titleRing embedding in faulty generalized honeycomb torus - GHT(m, n, n/2)en_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00207160903315524en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF COMPUTER MATHEMATICSen_US
dc.citation.volume87en_US
dc.citation.issue15en_US
dc.citation.spage3344en_US
dc.citation.epage3358en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000284889600002-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000284889600002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。