完整後設資料紀錄
DC 欄位語言
dc.contributor.author李蘭蘭en_US
dc.contributor.authorLan-Lan Leeen_US
dc.contributor.author王克陸en_US
dc.contributor.authorDr. Kelu Wangen_US
dc.date.accessioned2014-12-12T02:14:49Z-
dc.date.available2014-12-12T02:14:49Z-
dc.date.issued2003en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009139502en_US
dc.identifier.urihttp://hdl.handle.net/11536/60202-
dc.description.abstract任何金融商品推出後的成敗,決定於其需求與價格,而其價格之訂定是否合理,更是關鍵之所在。因此,相關利率商品價格訂定所需考慮的因素有哪些?其訂價方式又有哪些?如何正確地評價選擇權?為本論文所探討的課題。本論文研究主體為利率選擇權之利率下限,評價利率下限時,必須先建構利率模型,將利率的隨機過程加以描述,並根據該隨機過程,利用數值方法以求出利率下限的價格。但是,在多數利率衍生性商品或是利率模型往往並不易求得公式解。雖然從理論上可以得知,透過模擬次數的增加及切割期數,則模擬的價格期望值必然會收斂到理論價格。但切割模擬的次數到達多少才能將誤差降低到可接受的範圍內,故如何判斷求出的數值解是否合理、正確,才是主要問題。本文作法是先透過, Vasicek 模型與Hull和White之extended Vasicek模型,在特殊假設下求出利率下限之公式解。接下來再透過數值方法來評價Vasicek 模型、CIR模型與Hull-White模型,進而觀察切割的誤差隨著割切次數增加時的變化情形,以供參考。又由於Hull and White所提出的三元利率樹,可以建構出與市場完全一致的利率期間結構,且收斂速度極快。因此,本文將透過結合Hull and White三元利率樹與蒙地卡羅模擬的方式來評價路徑相依之利率下限,使其模擬出的利率隨機過程能與市場一致,並比較其差異性。zh_TW
dc.description.abstractThe purpose of this study is to numerically analyze the floor of the interest rate option. We first obtain the closed-form solutions by special assumptions of Vasicek model and Hull-White extended Vasicek model. Then the numerical techniques provide a simple and intuitive method for valuing floor of Vasicek model, CIR model and Hull-White model. An exact value for the floor is obtained in the limit as ∆t tends to zero. The trinomial tree proposed by Hull and White can provide consistent initial term structure and converge faster to the continuous time limit. Therefore, Hull-White trinomial tree can be extended to deal with path-dependent options which can recover the initial term structure of interest rates. Finally, this paper showed their different results.en_US
dc.language.isozh_TWen_US
dc.subject利率衍生性zh_TW
dc.subject利率下限zh_TW
dc.subject二元利率樹zh_TW
dc.subject三元利率樹zh_TW
dc.subject蒙地卡羅zh_TW
dc.subjectInterest rate derivativesen_US
dc.subjectFlooren_US
dc.subjectBinomial treeen_US
dc.subjectTrinomial treeen_US
dc.subjectMonte carloen_US
dc.title利率下限評價模型之數值分析zh_TW
dc.titleNumerical Analysis for Interest Rate Floor Valuationen_US
dc.typeThesisen_US
dc.contributor.department財務金融研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 950201.pdf
  2. 950202.pdf
  3. 950203.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。