标题: 学习案例集规则之推导--改良式 L1回归方法的运用
Induction of Rules From Learning Examples By A Modified L1 Regression Method
作者: 王樱珍
Wang, Ying-Jen
黎汉林
Han-Lin Li
资讯管理研究所
关键字: L1 回归法;案例式学习;单阶学习法;多阶学习法;L1 Regression Method;Learning By Examples;Single Layer Learning Method;Multiple Layer Learning Method
公开日期: 1995
摘要: 本文运用改良式 L1回归法来推导大型学习案例中的规则 .案例式学
习法可分为 单阶学习法与多阶学习法 ,单阶式案例学习法 (AQ 法)与多
阶式案例学习法 (类神经网路法 )的缺点为不易求得最佳解及不易加入限
制条件 . 本文的目的及在发展出一套新的案例学习法 ,以在合理的计算
时间下求得最佳解 .文中并以动物园里动物分类为例,进行案例学习规则
的推导 , 并证实多阶学习法可较单阶学习法求得更佳解.
This thesis uses a modified L1 regression method to induce
rules from large learning examples. The deficiencies of current
learning methods (AQ and Neural Networks ) are : firstly , they
can only find local optimum ; secondly , they are not allowed
to add constraints. This thesis proposes a new method to deduce
optimal rules in reasonable computation time. Ananimal
classification instance verifies that the multiple layers
learning method is better than the single layer learning
method.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT840396023
http://hdl.handle.net/11536/60555
显示于类别:Thesis