标题: | 学习案例集规则之推导--改良式 L1回归方法的运用 Induction of Rules From Learning Examples By A Modified L1 Regression Method |
作者: | 王樱珍 Wang, Ying-Jen 黎汉林 Han-Lin Li 资讯管理研究所 |
关键字: | L1 回归法;案例式学习;单阶学习法;多阶学习法;L1 Regression Method;Learning By Examples;Single Layer Learning Method;Multiple Layer Learning Method |
公开日期: | 1995 |
摘要: | 本文运用改良式 L1回归法来推导大型学习案例中的规则 .案例式学 习法可分为 单阶学习法与多阶学习法 ,单阶式案例学习法 (AQ 法)与多 阶式案例学习法 (类神经网路法 )的缺点为不易求得最佳解及不易加入限 制条件 . 本文的目的及在发展出一套新的案例学习法 ,以在合理的计算 时间下求得最佳解 .文中并以动物园里动物分类为例,进行案例学习规则 的推导 , 并证实多阶学习法可较单阶学习法求得更佳解. This thesis uses a modified L1 regression method to induce rules from large learning examples. The deficiencies of current learning methods (AQ and Neural Networks ) are : firstly , they can only find local optimum ; secondly , they are not allowed to add constraints. This thesis proposes a new method to deduce optimal rules in reasonable computation time. Ananimal classification instance verifies that the multiple layers learning method is better than the single layer learning method. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT840396023 http://hdl.handle.net/11536/60555 |
显示于类别: | Thesis |