標題: | Numerical Ranges of Radial Toeplitz Operators on Bergman Space |
作者: | Wang, Kuo Zhong Wu, Pei Yuan 應用數學系 Department of Applied Mathematics |
關鍵字: | Numerical range;radial Toeplitz operator;Bergman space;convexoid operator |
公開日期: | 1-Dec-2009 |
摘要: | A Toeplitz operator T(phi) with symbol phi in L(infinity)(D) on the Bergman space A(2)(D), where D denotes the open unit disc, is radial if phi(z) = phi(vertical bar z vertical bar) a. e. on D. In this paper, we consider the numerical ranges of such operators. It is shown that all finite line segments, convex hulls of analytic images of D and closed convex polygonal regions in the plane are the numerical ranges of radial Toeplitz operators. On the other hand, Toeplitz operators T(phi) with phi harmonic on D and continuous on (D) over bar and radial Toeplitz operators are convexoid, but certain compact quasinilpotent Toeplitz operators are not. |
URI: | http://dx.doi.org/10.1007/s00020-009-1713-y http://hdl.handle.net/11536/6380 |
ISSN: | 0378-620X |
DOI: | 10.1007/s00020-009-1713-y |
期刊: | INTEGRAL EQUATIONS AND OPERATOR THEORY |
Volume: | 65 |
Issue: | 4 |
起始頁: | 581 |
結束頁: | 591 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.