完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 彭紹貞 | en_US |
dc.contributor.author | Sho-Chen Peng | en_US |
dc.contributor.author | 薛元澤 | en_US |
dc.contributor.author | Yuang-Chen Hsueh | en_US |
dc.date.accessioned | 2014-12-12T02:25:12Z | - |
dc.date.available | 2014-12-12T02:25:12Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT890394074 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/66978 | - |
dc.description.abstract | 內差在三維物體重建中是一個重要步驟。在許多醫學ヽ科學的應用中,為了要了解物體的結構,或是為了利於操作分析,我們必須由一系列的二維切片資料中重建回一個三維物體。如果二維切面之間的空隙太大,則必須用內插法彌補空隙以復原物體的外觀。在這篇論文中,我們將深入探討各種以形態學為基礎的內插法,並提出一個結合比例轉換與形態中間值的內插法。和現有的方法比較,所提出的方法對於劇烈凹陷或凸起的物體能夠成功的獲得令人滿意的內插結果,而且此方法還具有廣泛的適應性及易於實作之優點。 | zh_TW |
dc.description.abstract | Interpolation is an important processing step in 3-D reconstruction. In many medical and other scientific applications, a 3-D object must be reconstructed from serial cross sections, either to aid in the comprehension of the object’s structure or to facilitate its automatic manipulation and analysis. If the cross sections are not closely spaced, interpolation is needed to recapture the appearance of the embedded 3-D object. A new method, based on mathematical morphology, is presented here to implement the interpolation by using scaling transform and morphological median concept. Compared with previously proposed methods, the new approach successfully resolves the interpolation problem when there is narrow concavity or sharp invagination in the interpolated objects. In the mean time, it has a wide adaptability and is easy to implement. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 數學形態學 | zh_TW |
dc.subject | 形態中間值 | zh_TW |
dc.subject | 內插法 | zh_TW |
dc.subject | Mathematical Morphology | en_US |
dc.subject | Morphological Median | en_US |
dc.subject | Interpolation | en_US |
dc.title | 加入比例轉換之形態內插法 | zh_TW |
dc.title | Morphological Interpolation With Scaling | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊科學與工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |