标题: 在竞争风险下,目标事件的累积发生机率的回归分析
Regression Analysis for Cumulative Incidence Probability under Competing Risks
作者: 张玮华
Wei-Hwa Chang
王维菁
Weijing Wang
统计学研究所
关键字: 竞争风险;累积发生率函数;加权法;补插法;估计方程式;Cause-specific hazard;Cumulative incidence function;Inverse probability of censoring;Imputation;Logistic regression
公开日期: 2006
摘要: 许多疾病的病程包含数种以上的风险,例如乳癌患者可能会经历癌细胞的复发,转移甚至病情严重导致死亡。当研究者感兴趣的主题事件为非终端事件时(例如癌细胞的复发),若终端事件先发生,就无法观察到主题事件。在存活分析的架构下,死亡被视为复发事件的竞争风险。此时如何推估主题事件的发生机率是个热门的研究主题。本篇论文在回归的架构下探讨自变数对主题事件发生机率的影响。

分析实证资料中常会因设限(censoring)而只能记录到不完整的资讯。针对此现象,本论文提出两种偏误修正的方法以估计回归模式的参数。第一个方法利用设限机率的倒数做为权数以改正因设限造成的偏误,称之为 IPCW;第二个方法则以缺失值的条件期望值做为填补不完整的资讯,称之为 Imputation。论文中我们推导回归参数估计量的大样本性质,并藉由模拟以验证所提出的估计方法在有限样本时的表现。本论文亦将所提的回归模型和估计方法应用在史丹佛心脏移植资料和非典型肺炎(SARS)资料做为实例的佐证。
In the dissertation, we consider regression analysis for the
cumulative incidence probability under the framework of competing risks. Instead of modeling the whole function which usually involves making stronger assumptions, we investigate the effect of covariates on the cumulative incidence rate at a pre-specified time point.

The information of incidence may be missing due to censoring. We apply two approaches to handle incomplete data. The first method utilizes the technique of the inverse probability of censoring weighting (IPCW) to correct the sampling bias. The other approach is to impute missing variables by an estimate of its conditional mean. Both methods are popular and useful tools in handling missing data. Large-sample properties of the proposed methods are also derived. Simulations are performed to examine finite-sample performances of the proposed methods. The Stanford Heart Transplant data and the severe acute respiratory syndrome (SARS) data are analyzed to illustrate the applicability of the proposed model and inference methods.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT008826803
http://hdl.handle.net/11536/67223
显示于类别:Thesis


文件中的档案:

  1. 680301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.