标题: | 转动机械系统之阶次分析 Order Analysis for Rotating Mechanical Systems |
作者: | 陈庆育 Chingyu Chen 白明宪 Mingsian Bai 机械工程学系 |
关键字: | 阶次追踪;再取样过程;频率抹平;适应性阶次追踪技术;递回式最小平方法;卡氏滤波器;Order Tracking;Resampling;Frequency Smearing;Adaptive Order Tracking Technique;Recursive Least-Squares method;Kalman Filter |
公开日期: | 2000 |
摘要: | 本研究的主要目标是希望研究发展一套针对多转轴之转动机械的阶次方法,以更有效地来监测转动机械。在传统的阶次分析法上,是以傅立叶分析法为主,并配合轴的转速来达到转动机械的阶次追踪(Order Tracking)。然而在转轴转速变化的情形下,再取样过程(Resampling)常被用于取舍时、频域上的解析度。此方法有许多缺点,尤其是相邻近阶次与相交越阶次上,存在有频率抹平(Frequency Smearing)的现象,而且传统的阶次分析法也无法处理多转轴机械系统。在本文中将提出两种适应性阶次追踪技术(Adaptive Order Tracking Technique),分别利用递回式最小平方法(Recursive Least-Squares method)与卡氏滤波器(Kalman Filter),来解决传统的阶次分析法所遇到的困难。研究内容主要包含两个方面:第一,传统方法与新方法的理论架构陈述;第二,针对实务上所可能遇到的条件因子,进行不同组合的电脑数值模拟、测试,并根据模拟结果进行讨论。 The aim of this research is to develop an order tracking method for monitoring and diagnosis of any multi-rotating axle machinery. Conventional methods of order tracking are primarily based on Fourier analysis with reference to shaft speed. Resampling process is generally required in the fast Fourier transform (FFT)-based methods to compromise between time and frequency resolution for various shaft speeds. Conventional methods suffer from a number of shortcomings. In particular, smearing problem arises when closely spaced orders or crossing orders are present. Conventional methods also are ineffective for the applications involving multiple independent shaft speeds. This paper presents two adaptive order tracking techniques based on Recursive Least-Squares (RLS) filtering and Kalman filtering to overcome the problems encountered in conventional methods. The work includes two major parts. The first part is the theoretical background of conventional methods and the proposed methods. In the second part, we verify the proposed methods and discuss the results by using computational numerical simulations. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT890489032 http://hdl.handle.net/11536/67531 |
显示于类别: | Thesis |