Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 姚素娟 | en_US |
dc.contributor.author | Su-Chuan Yao | en_US |
dc.contributor.author | 李榮耀 | en_US |
dc.contributor.author | Jong-Eao Lee | en_US |
dc.date.accessioned | 2014-12-12T02:26:16Z | - |
dc.date.available | 2014-12-12T02:26:16Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT890507003 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/67682 | - |
dc.description.abstract | 黎曼面上對封閉曲線的基底 a,b cycles 積分可以解決部分微分方程的問題。將複數平面推廣至黎曼面,使得定義在複數平面上的多值函數在黎曼面上是單值和可解析的。我們利用代數及幾何方法來定義此種三面的黎曼空間,然後利用Cauchy integral theorem,我們可以找到一組與 a,b cycles 等價的路徑,使得兩種積分相等。利用Mathematica,此組沿著 cuts 的等價路徑之積分可以被正確且簡單的求出。 | zh_TW |
dc.description.abstract | The integrals over a,b cycles on Riemann surface can solve some problems in differential Equations. We use algebraic and geometric method to construct three-sheeted Riemann surfaces of genus N such that a multi-valued function is single-valued and analytic on the Riemann surface. Then, by Cauchy integral theorem, we can find equivalent paths of a,b cycles such that the two integrals are equal. The equivalent path-integrals along cuts can be computed by "Mathematica" simply and correctly. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 黎曼空間 | zh_TW |
dc.subject | 代數結構 | zh_TW |
dc.subject | 幾何結構 | zh_TW |
dc.subject | Riemann surface | en_US |
dc.subject | geometric structure | en_US |
dc.subject | algebraic structure | en_US |
dc.title | 黎曼空間之積分運算 | zh_TW |
dc.title | Integral Evaluation on Three-sheeted Riemann Surface of Genus N of Type I | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |