Full metadata record
DC FieldValueLanguage
dc.contributor.author姚素娟en_US
dc.contributor.authorSu-Chuan Yaoen_US
dc.contributor.author李榮耀en_US
dc.contributor.authorJong-Eao Leeen_US
dc.date.accessioned2014-12-12T02:26:16Z-
dc.date.available2014-12-12T02:26:16Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890507003en_US
dc.identifier.urihttp://hdl.handle.net/11536/67682-
dc.description.abstract黎曼面上對封閉曲線的基底 a,b cycles 積分可以解決部分微分方程的問題。將複數平面推廣至黎曼面,使得定義在複數平面上的多值函數在黎曼面上是單值和可解析的。我們利用代數及幾何方法來定義此種三面的黎曼空間,然後利用Cauchy integral theorem,我們可以找到一組與 a,b cycles 等價的路徑,使得兩種積分相等。利用Mathematica,此組沿著 cuts 的等價路徑之積分可以被正確且簡單的求出。zh_TW
dc.description.abstractThe integrals over a,b cycles on Riemann surface can solve some problems in differential Equations. We use algebraic and geometric method to construct three-sheeted Riemann surfaces of genus N such that a multi-valued function is single-valued and analytic on the Riemann surface. Then, by Cauchy integral theorem, we can find equivalent paths of a,b cycles such that the two integrals are equal. The equivalent path-integrals along cuts can be computed by "Mathematica" simply and correctly.en_US
dc.language.isoen_USen_US
dc.subject黎曼空間zh_TW
dc.subject代數結構zh_TW
dc.subject幾何結構zh_TW
dc.subjectRiemann surfaceen_US
dc.subjectgeometric structureen_US
dc.subjectalgebraic structureen_US
dc.title黎曼空間之積分運算zh_TW
dc.titleIntegral Evaluation on Three-sheeted Riemann Surface of Genus N of Type Ien_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis