Full metadata record
DC FieldValueLanguage
dc.contributor.author蕭宇蔚en_US
dc.contributor.authorHsiao, Yu-Weien_US
dc.contributor.author李榮耀en_US
dc.contributor.authorLee, Jong-Eaoen_US
dc.date.accessioned2014-12-12T02:26:16Z-
dc.date.available2014-12-12T02:26:16Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890507012en_US
dc.identifier.urihttp://hdl.handle.net/11536/67692-
dc.description.abstract我們利用代數與幾何分析的方法建構多值函數(開立方函數)的黎曼曲面使其在此黎曼曲面上是單值函數而且是可解析的。在黎曼曲面上對封閉曲線的基底a,b cycles 積分可以解決許多微分方程的問題,並由Cauchy integral theorem,我們可以找到一組與a,b cycles 等價的路徑,使得兩種積分相等,再利用Mathematica,此組沿著 cuts 的等價路徑之積分可以被正確且簡單的求出。同時,periodic solution 也可由此簡單的方法獲得,並且經由Mathematica得到驗證。zh_TW
dc.description.abstractWe use algebraic and geometric analysis to develop three-sheeted Riemann surface R of genus N such that muti-valued function on the complex plane C become single-valued and analytic on R. The integrals over a,b cycles on R can solve many problems in differential equations. By Cauchy integral theorem, we find equivalent paths of a,b cycles such that their integrals are equal. And we use the software Mathematica to compute the equivalent paths of a,b cycles simply and correctly. This approach offers an easy way to obtain the periodic solution and be checked by Mathematica.en_US
dc.language.isoen_USen_US
dc.subject黎曼空間zh_TW
dc.subject黎曼曲面zh_TW
dc.subject開立方積分zh_TW
dc.subject分歧點zh_TW
dc.subject分歧割線zh_TW
dc.subject封閉曲線積分zh_TW
dc.subject多值函數zh_TW
dc.subjectRiemannen_US
dc.subjectRiemann Surfaceen_US
dc.subjectthree_sheeted Riemann Surfaceen_US
dc.subjectbranch pointen_US
dc.subjectbranch cuten_US
dc.subjectclosed-curve integralsen_US
dc.subjectmulti-valued functionen_US
dc.title黎曼空間之積分運算IIzh_TW
dc.titleIntegral Evaluations on Three-sheeted Riemann Surfaces of Genus N of Type IIen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis