标题: | 图的无k点子树支配问题 T_k-free Domination in Graphs |
作者: | 曾湄菁 Mei-Jing Tzeng 张镇华 Gerard J. Chang 应用数学系所 |
关键字: | 支配;无k点子树;树;块图;domination;tree-free;tree;block graphs |
公开日期: | 2000 |
摘要: | 在一个图G中, 每一个点都可以支配(dominate)它自己以及和它相邻的点。对一个固定的正整数k (k>=2)而言,无k点子树支配问题就是去找出最小的点集合,使得图G中的每个点都可以被这个点集合支配,而这个点集合中没有 k 点子树图[不见得一定得是延伸(induced subgraph)图]存在,也就是说,每个部份(component)的大小要小于k。当k=2时,讨论无k点子树问题等于讨论一般图的独立支配数 r_i(G),当k>=(n+1)/2时,讨论无k点子树支配问题等于讨论一般图的支配数r(G)。在这篇论文中,我们从演算法的角度来看无k点子树支配问题,我们使用动态规划(dynamic programming method)设计有效率的演算法,去解决在树(tree)和块图(block graphs)上的无k点子树分配问题。 The Tk-free domination number r(G;-T_k), k>=2, of a graph G is the minimum cardinality of a dominating set D such that the subgraph <D> induced by D contains no tree of k vertices as a (not necessarily induced) subgraph; or equivalently, each component of <D> has less than k vertices. When k=2, the T_k-free domination number is the independent domination number; when k>=(n+1)/2 , the T_k-free domination is the usual domination. In this thesis, we study T_k-free domination from an algorithmic point of view. In particular, we present efficient algorithms for the problem on trees and block graphs by the dynamic programming method. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT890507022 http://hdl.handle.net/11536/67703 |
显示于类别: | Thesis |