标题: | 射频电路与高速输入输出界面电路之静电放电防护设计 On-Chip ESD Protection Designs for Radio-Frequency Integrated Circuits and High-Speed I/O Interface Circuits |
作者: | 萧渊文 柯明道 Ming-Dou Ker 电子研究所 |
关键字: | 静电放电防护设计;射频积体电路;高速输入输出界面电路;ESD Protection Design;Radio-Frequency Integrated Circuit;High-Speed I/O Interface Circuit |
公开日期: | 2008 |
摘要: | 随着近年来通讯技术与积体电路制程的持续演进,无线与有线通讯装置已经成为生活中不可或缺的重要设备。藉由无线通讯传输资料,使用者可更机动地收发各种讯息,此演进大幅提升了资料传输的方便性。有线传输技术的发展,加速无线接取点与伺服器间的资料传输速度。积体电路制程技术的发展,降低了无线与有线通讯装置的制造成本,更激起使用者对通讯装置的需求与使用意愿。 所有电子产品,包含积体电路产品,必须于量产时符合可靠度的规范,以便让使用者用得安心,并提供该产品足够的耐用年限。静电放电(Electrostatic Discharge, ESD)是积体电路可靠度中最重要的一环,大多数电子产品的故障与损坏均与遭受静电放电轰击有关。为对积体电路提供有效的静电放电防护,所有积体电路与外界接触的焊垫(Pad)皆须搭配静电放电防护设计,包含电源焊垫与输入输出焊垫,而输入输出焊垫上的静电放电防护电路会在讯号路径上产生寄生效应。无线通讯装置中的射频(Radio- Frequency, RF)前端电路,亦需要搭配静电放电防护设计,因为他们连接射频收发机与外接之滤波器或天线。由于射频电路的工作频段高达数GHz至数十GHz,如此高频的工作频率对于讯号路径上的寄生效应有极严格的限制,若讯号路径上的寄生效应过大,将导致射频电路性能的严重衰减。除了无线通讯之前端电路,有线传输系统中的前端电路,近年来也在新型传输标准中提升其传输速率,故有线传输系统中的输入输出界面电路对讯号路径上的寄生效应要求也日趋严格。以上情况引发射频电路与高速输入输出界面电路之静电放电防护设计的挑战:如何在最低程度性能衰减的前提下达成最高的静电放电耐受度,亦即如何将静电放电防护元件的寄生效应最小化。 除此之外,互补式金氧半制程的演进,更进一步提升静电放电防护设计的困难度。对核心电路性能而言,使用先进的积体电路制程,电晶体的工作频率可以提升,并可降低元件的杂讯、功率损耗。随着积体电路制程的进步,电晶体的元件尺寸可以大幅微缩,故可整合更多电路功能于单一晶片内,此举开启了系统单晶片(System on Chip, SoC)的应用。然而静电放电轰击的强度并未随着积体电路元件微缩而降低,随着积体电路制程的演进,电晶体闸极氧化层的崩溃电压逐渐降低,使电晶体愈容易遭受静电放电轰击而损坏,因此另一个挑战随之产生:如何在先进制程中降低静电放电轰击时于静电放电防护元件上产生的跨压,以有效保护内部电路。上述两个挑战为本论文的研究动机,本论文由积体电路周围的焊垫设计开始,循序渐进至积体电路内部的全晶片静电放电防护设计与射频前端电路设计;由单一晶片的电路设计,延伸至整个电子系统的电路板层级元件充电模式(Board-Level Charged Device Model)静电放电防护探讨。本论文的研究方向包括:(1)分析目前已发表的射频电路与高速输入输出界面电路之静电放电防护设计相关文献、(2)超低寄生电容的焊垫设计、(3)宽频分散式放大器之静电放电防护设计、(4)搭配全晶片静电放电防护设计之差动式低杂讯放大器(Low-Noise Amplifier, LNA)、(5)高速输入输出界面电路之静电放电防护设计、(6)电路板层级元件充电模式静电放电(Board-Level Charged-Device-Model ESD)对积体电路产品之影响。 本论文第二章针对目前已发表的射频电路与高速输入输出界面电路之静电放电防护设计进行分析,将各种设计分门别类,并归纳各种设计的优缺点与成效。本章首先以量测结果说明静电放电防护元件的寄生效应,并阐述静电放电防护元件对电路性能造成之负面影响。除寄生效应外,静电放电防护元件于积体电路遭受静电放电轰击时的元件特性亦相当重要,因为这关系该积体电路的静电放电耐受度。本章将目前已发表的射频电路与高速输入输出界面电路之静电放电防护设计分为三种方式,第一种为使用电路技巧降低静电放电防护元件寄生效应的设计方式,使用电路技巧,可将静电放电防护元件的寄生效应透过阻抗匹配或阻抗隔绝的方式大幅降低,但额外的元件可能提高晶片面积或制作成本。第二种方式藉由改变元件布局以降低静电放电防护元件的寄生效应,虽然寄生效应的改善幅度较使用电路技巧的方式小,但由于不需外加元件,故晶片面积与制作成本亦小于使用电路技巧的方式。第三种方式藉由改变制程降低静电放电防护元件的寄生效应,改变半导体的掺杂浓度,可改变接面的寄生电容值,此法虽可以最直观的方式降低静电放电防护元件的寄生效应,但改变制程的可能性在一般应用中并不常见。本章后段比较各种设计的复杂度、改善后之寄生效应、静电放电耐受度、与面积使用效率。 除了静电放电防护元件以外,焊垫也会在讯号路径上对射频讯号造成负面影响,为了提升射频电路之性能,焊垫的寄生电容值也必须尽量降低。本论文第三章提出一种新型具有超低电容值的焊垫架构,可于一般互补式金氧半制程中实现,不需修改制程。在此新型焊垫架构中藉由使用电感,可抵销焊垫本身的寄生电容值,以大幅降低整个焊垫的等效寄生电容值。本研究于130奈米互补式金氧半制程中实现三种新型设计,分别在传统焊垫的区域中,以一层、三层、五层金属实现三种电感,故此新型设计不需增加焊垫面积。藉由不同电感值,可产生不同共振频率,也可达成不同程度的焊垫电容改善量。实验结果显示,藉由焊垫下方电感产生的共振效应,等效焊垫电容可于特定频段内大幅降低。以五层金属实现电感的焊垫架构,在4.3 GHz至4.8 GHz的频段内,等效焊垫电容值可降低至接近0 fF。利用此新型焊垫架构,将可降低因传统焊垫电容造成的讯号延迟与讯号损耗,进而提升射频电路性能。 本论文第四章提出新型分散式静电放电防护架构,并将其应用于宽频分散式放大器,且以0.25微米互补式金氧半制程实现。当所有静电放电防护元件的总电容为300 fF时,搭配传统等尺寸式分散式静电放电防护架构的分散式放大器,其人体放电模式(Human Body Model, HBM)与机械放电模式(Machine Model, MM)静电放电耐受度分别为5.5 kV与325 V,且于1 GHz至10 GHz的频段内拥有4.7 ± 1 dB的增益;搭配新型递减尺寸式分散式静电放电防护架构的分散式放大器,人体放电模式与机械放电模式静电放电耐受度可大幅提升至8 kV与575 V,且于1 GHz至9.2 GHz的频段内拥有4.9 ± 1.1 dB的增益。这两种分散式静电放电防护架构均可与分散式放大器共同设计,以达成符合要求的射频性能与静电放电耐受度。 除了搭配静电放电防护设计的宽频射频前端电路外,本论文第五章提出窄频射频前端电路与静电放电防护电路的共同设计。本章使用130奈米互补式金氧半制程设计一个工作于5 GHz的差动式低杂讯放大器,并将数种新型静电放电防护架构应用至该差动式低杂讯放大器。本研究为目前相关研究中,率先探讨差动式低杂讯放大器接点对接点(Pin to Pin)静电放电耐受度的研究。所有差动式低杂讯放大器的功率消耗皆为10.3 mW。没有搭配静电放电防护设计的差动式低杂讯放大器,在5 GHz的功率增益与杂讯指数分别为16.2 dB与2.16 dB。本章亦实现传统双二极体(Double Diode)静电放电防护架构的差动式低杂讯放大器,此设计于各输入焊垫至电源线与接地线间分别放置静电放电防护二极体,其人体放电模式与机械放电模式静电放电耐受度分别为2.5 kV与200 V,在5 GHz的功率增益与杂讯指数分别为17.9 dB与2.43 dB。第一个新提出的静电放电防护设计使用双矽控整流器(Silicon-Controlled Rectifier, SCR),此设计于各输入焊垫至电源线与接地线间分别放置矽控整流器提供静电放电防护功能,其人体放电模式与机械放电模式静电放电耐受度分别为6.5 kV与500 V,搭配此设计的差动式低杂讯放大器在5 GHz的功率增益与杂讯指数分别为17.9 dB与2.54 dB。第二个新提出的静电放电防护设计于两个差动输入焊垫间插入静电放电汇流排(ESD Bus),藉此于两个差动输入焊垫间提供有效的静电放电路径,其人体放电模式与机械放电模式静电放电耐受度分别为3 kV与100 V,搭配此设计的差动式低杂讯放大器在5 GHz的功率增益与杂讯指数分别为18 dB与2.62 dB。第三个新提出的静电放电防护设计于两个差动输入焊垫间使用交叉耦合(Cross Couple)的矽控整流器,除了可提供单一输入焊垫至电源线与接地线的静电放电防护外,更可在不增加元件的情况下,额外提供两个差动输入焊垫间的接点对接点模式静电放电防护功能,其此设计的人体放电模式与机械放电模式静电放电耐受度分别为1.5 kV与150 V,搭配此设计的差动式低杂讯放大器在5 GHz的功率增益与杂讯指数分别为19.2 dB与3.21 dB。另一个静电放电防护设计搭配双二极体与交叉耦合矽控整流器,可达成4 kV人体放电模式与300 V机械放电模式的静电放电耐受度,搭配此设计的差动式低杂讯放大器在5 GHz的功率增益与杂讯指数分别为19.1 dB与3.05 dB。除了比较静电放电耐受度外,搭配各种静电放电防护设计的差动式低杂讯放大器之射频性能,亦于第五章内比较与讨论。 本论文第六章提出高速输入输出界面电路之静电放电防护设计。首先量测在130奈米互补式金氧半制程中P型扩散区与N井接面(P+/N-well)及N型扩散区与P井接面(N+/P-well)两种二极体在不同尺寸下的静电放电耐受度与寄生电容值。为了确保能提供一般商用规范的2 kV人体放电模式静电放电耐受度,静电放电防护二极体需使用40微米以上的周长实现。接着利用仿制接收级电晶体(Dummy Receiver NMOS)架构,将电晶体的闸极连接至输入焊垫,并将电晶体的汲极、源极、基底接地,搭配选定之静电放电防护二极体尺寸与电源箝制静电放电防护电路,可量测此仿制接收级电晶体的静电放电耐受度。由于仿制接收级电晶体的连接方式近似于一般接收级内电晶体的连接方式,故可由仿制电晶体的静电放电耐受度推估一般接收级的静电放电耐受度。此静电放电防护设计亦应用至2.5 GHz的高速接收级界面电路,在250 fF寄生电容的限制下,此静电放电防护设计可达成3 kV的人体放电模式静电放电耐受度。此外本论文第六章提出一种新型设计,将原本置于输入焊垫与接地线间的N型扩散区与P井接面(N+/P-well)二极体置换为矽控整流器,藉由与电源箝制静电放电防护电路共用静电放电侦测电路,输入输出接点的寄生电容可有效降低,并可藉由使用矽控整流器提升静电放电耐受度。本研究将静电放电防护元件与部分静电放电侦测电路置于输入焊垫下方,可节省晶片面积,并降低讯号路径上的寄生电容值。 完成单一积体电路晶片的静电放电防护设计后,每个晶片皆须安装至电子产品的模组内并进行功能测试,此时可能引发电路板层级元件充电模式静电放电,导致晶片损毁。本论文第七章探讨电路板层级元件充电模式静电放电对积体电路产品造成的威胁,首先简介晶片层级与电路板层级元件充电模式静电放电的成因,并说明数个积体电路晶片遭受电路板层级元件充电模式静电放电损坏的实例。由于电路板层级元件充电模式静电放电的电流峰值与电子模组中的电路板尺寸有密切关系,第七章第二部分量测不同电路板尺寸所产生的电路板层级元件充电模式静电放电电流波形,实验结果显示较大的电路板尺寸或将电路板充电至较高电压,将导致较大的电路板层级元件充电模式静电放电电流峰值,为了降低此电流峰值,以免损坏模组内的积体电路晶片,在放电路径上可放置串联电阻,实验结果显示此举可大幅降低电路板层级元件充电模式静电放电的电流峰值。第七章亦对数个以互补式金氧半制程制作的测试元件与测试电路进行晶片层级与电路板层级元件充电模式静电放电测试,测试结果发现电路板层级元件充电模式静电放电耐受度较低,且造成较严重的损坏情形,故电路板层级元件充电模式静电放电对积体电路晶片的威胁比晶片层级元件充电模式静电放电更为严重。 第八章总结本论文的研究成果,并提出数个接续本论文研究方向的研究题目。由于目前对电路板层级的静电放电测试方式尚未有明确规范,本论文于附录提出“积体电路之电路板层级元件充电模式静电放电测试标准”提案,提案中详细定义电路板层级静电放电测试的各项测试条件与量测方式。 本论文所提出的各项新型设计,均搭配实验晶片量测结果以验证设计之理论,且有相对应的国际期刊与国际研讨会论文发表。本论文中数个创新设计已提出专利申请。 With the continuous evolution of communication technology and integrated circuit (IC) process, wireless and wireline communication devices had become essential in daily life. By using the wireless communication devices to transmit data, users can access any information more conveniently. Advance wireline communication technology speedups the data transmission rate between the access points (AP) and the server. The continuous scaling of IC process technology further stimulates the demand for communication devices. All microelectronic products, including IC products, must meet the reliability specifications during mass production in order to be safely used and provide moderate life time. Electrostatic discharge (ESD), which has become one of the most important reliability issues in IC products, must be taken into consideration during the design phase of all IC products. Most of the failures and damages found in ICs were demonstrated to be related to ESD. To provide effective ESD protection for the IC, all pads which connect the IC and the external world need to be equipped with ESD protection circuits, including the input/output (I/O) pads, VDD pads, and VSS pads. However, the ESD protection devices at the I/O pads inevitably cause parasitic effects on the signal path. The radio-frequency (RF) front-end circuits in wireless communication devices need ESD protection design as well because they connect the RF transceiver to the external antenna or band-select filter. Since the RF front-end circuits operate in the frequency band ranging from several gigahertzes to tens of gigahertz, such a high operating frequency leads to strict limitations for the parasitic effects on the signal path. If the parasitic effects on the signal path are too large, RF circuit performance will be seriously degraded. Besides RF front-end circuits, the data rates of recent wireline communication standards also increase, so the parasitic effects on the signal paths of high-speed I/O interface circuits in wireline communication systems also need to be watched. The situation introduces the challenge in ESD protection design for RF circuits and high-speed I/O interface circuits, which is to achieve the highest ESD robustness with the smallest performance degradation. In other words, the parasitic effects of the ESD protection devices need to be minimized. Furthermore, the evolution of CMOS process increases the difficulty of ESD protection design. Advanced CMOS technologies not only increase the operating frequency of transistors but also reduce the noise of active devices and power consumption. With the continuous scaling of CMOS technology, the dimensions of CMOS devices are reduced, so more function blocks can be integrated into a single chip. This is the application of system on chip (SoC). However, ESD was not scaled down with the CMOS technology. MOS transistors fabricated in advanced CMOS processes have thinner gate oxide and thus lower gate-oxide breakdown voltage, so they are more vulnerable to ESD. Here comes the other design challenge, which is to reduce the voltage across the ESD protection devices under ESD stresses in advanced CMOS processes. The two aforementioned design challenges form the motivation of this dissertation. This dissertation begins at the design in the periphery of the IC, which is the bond pad, and enters the co-design of RF front-end and ESD protection circuits. Besides, this dissertation covers the whole-chip ESD protection design within a single chip and the investigation of board-level charged-device-model (CDM) ESD issue in IC products. The research topics including: (1) overview of previous works on ESD protection design for RF and high-speed I/O interface circuits, (2) ultra low-capacitance bond pad design, (3) ESD protection design for wideband distributed amplifier, (4) differential low-noise amplifier (LNA) with whole-chip ESD protection design, (5) ESD protection design for high-speed I/O interface circuits, and (6) investigation on board-level CDM ESD issue in IC products. In chapter 2, the published ESD protection designs for RF front-end circuits and high-speed interface circuits are overviewed. The designs are categorized with their individual advantages and disadvantages clearly analyzed. The RF performance degradation caused by ESD protection devices are illustrated with measured results. Besides, the characteristics of ESD protection devices under ESD stress conditions are quite important, because it determines the ESD robustness. The designs are categorized into three groups, which are the circuit solution, layout solution, and process solution. With the circuit technique, the impacts of parasitic effects caused by ESD protection devices on circuit performance can be significantly mitigated by impedance matching or impedance isolation. However, the increased chip area due to the extra components increases the fabrication cost. With the layout modification, the parasitic effects and dimensions of ESD protection devices can be moderately reduced. Since no extra component is used, the fabrication cost is lower than that with circuit technique. The third group is process modification. By modifying the doping concentration, the junction capacitance can be adjusted to reduce the parasitic effects of ESD protection devices. However, process modification is uncommon in general IC products. The design complexity, improved parasitic effect, ESD robustness, and area efficiency of all reported designs are compared in this chapter. Besides ESD protection devices, bond pads also cause impacts on circuit performance because of their parasitic capacitance. To mitigate the performance degradation, bond-pad capacitance needs to be minimized as well. A new low-capacitance bond pad structure in CMOS technology for RF applications is proposed in chapter 3. Three kinds of inductors stacked under the pad are used in the proposed bond pad structure. Experimental results in a 130-nm CMOS process have verified that the bond-pad capacitance is reduced due to the cancellation effect provided by the inductor embedded in the proposed bond pad structure. The bond-pad capacitance is reduced to almost 0 fF from 4.3 to 4.8 GHz. The proposed bond pad structure is fully compatible to general CMOS processes without any extra process modification. In chapter 4, two distributed ESD protection schemes are proposed and applied to protect distributed amplifiers against ESD stresses. Fabricated in a 0.25-μm CMOS process, the distributed amplifier with the first protection scheme of the equal-sized distributed ESD (ES-DESD) protection scheme, contributing an extra 300 fF parasitic capacitance to the circuit, can sustain the human-body model (HBM) ESD level of 5.5 kV and machine-model (MM) ESD level of 325 V, while exhibits the flat-gain of 4.7 ± 1 dB from1 to 10 GHz. With the same total parasitic capacitance, the distributed amplifier with the second protection scheme of the decreasing-sized distributed ESD (DS-DESD) protection scheme achieves better ESD robustness, where the HBM ESD level is over 8 kV and MM ESD level is 575 V, and has the flat-gain of 4.9 ± 1.1 dB over the 1 to 9.2-GHz band. With these two proposed ESD protection schemes, the wideband RF performances and high ESD robustness of the distributed amplifier can be successfully co-designed to meet the application specifications. Besides ESD protection design for wideband RF frond-end circuits, co-design of narrow band LNA and ESD protection circuit is proposed in chapter 5. A 5-GHz differential LNA is implemented in a 130-nm CMOS process, and several new ESD protection schemes are applied to this differential LNA. This is the first work which investigates the pin-to-pin ESD robustness of differential LNAs. All of the fabricated differential LNAs consume 10.3 mW from the 1.2-V power supply. The reference differential LNA without ESD protection has 16.2-dB power gain and 2.16-dB noise figure at 5 GHz. The conventional double-diode ESD protection scheme is realized for the differential LNA, which has 2.5-kV HBM and 200-V MM ESD robustness. The differential LNA with the double-diode ESD protection scheme has 17.9-dB power gain and 2.43-dB noise figure at 5 GHz. With the proposed double silicon-controlled rectifier (SCR) ESD protection scheme, the HBM and MM ESD levels are significantly improved to 6.5 kV and 500 V, respectively. Besides, the differential LNA with the double-SCR ESD protection has 17.9-dB power gain, and 2.54-dB noise figure at 5 GHz. Another proposed design uses an ESD bus between the differential input pads, which has 3-kV HBM and 100-V MM ESD robustness. The differential LNA with the proposed ESD bus has 18-dB power gain and 2.62-dB noise figure at 5 GHz. The ESD protection design using cross-coupled SCR devices between the differential input pads is also proposed. Besides providing ESD protection for a single input pad, pin-to-pin ESD protection is also achieved without adding any extra devices. This ESD protection scheme achieves 1.5-kV HBM and 150-V MM ESD levels, respectively. The power gain and noise figure of this differential LNA are 19.2 dB and 3.2 dB, respectively. By using other diodes beside the cross-coupled SCR devices, the turn-on efficiency of ESD protection devices can be enhanced. With the double diodes and the cross-coupled SCR devices, the ESD-protected differential LNA achieves 4-kV HBM and 300-V MM ESD robustness, and exhibits 19.1-dB power gain and 3-dB noise figure at 5 GHz. Chapter 6 presents the ESD protection design for high-speed I/O interface circuits. The ESD levels and parasitic capacitances of P+/N-well and N+/P-well ESD protection diodes with different dimensions are characterized in the beginning. Then the double-diode ESD protection scheme is applied to the dummy receiver NMOS and the dummy transmitter NMOS. Since the connection of the dummy receiver NMOS (dummy transmitter NMOS) is similar to that of the NMOS transistor in a receiver (transmitter) interface circuit, the ESD robustness of the dummy receiver NMOS (dummy transmitter NMOS) can be used to predict the ESD robustness of the high-speed interface circuit with this ESD protection scheme. This whole-chip ESD protection scheme is also applied to a 2.5-Gb/s high-speed I/O interface circuit, and the ESD robustness is larger than 3 kV in HBM with the parasitic capacitance of less than 250 fF. Moreover, a new ESD protection scheme is proposed in chapter 6. By replacing the N+/P-well diode between the input pad and VSS with the SCR, the ESD robustness can be further improved. In the ESD protection schemes in chapter 6, the ESD protection devices and part of the ESD detection circuit is placed under the I/O pad to reduce the chip area and the parasitic capacitance on the signal path. After finishing ESD protection design for a single chip, the chip needs to be installed in a module and module function test will be performed. At this time, board-level CDM ESD events may occur to damage the ICs. In chapter 7, the impacts caused by board-level CDM ESD events on IC products are investigated. The mechanism of board-level CDM ESD event is introduced first. Based on this mechanism, an experiment has been performed to investigate the board-level CDM ESD current waveforms under different sizes of printed circuit boards (PCBs), different charged voltages, and different series resistances in the discharging path. Experimental results have shown that the discharging current strongly depends on the PCB size, charged voltage, and series resistance. Moreover, chip-level and board-level CDM ESD levels of several test devices and test circuits fabricated in CMOS processes have been characterized and compared. Test results have shown that the board-level CDM ESD level of the test circuit is lower than the chip-level CDM ESD level, which demonstrates that the board-level CDM ESD event is more critical than the chip-level CDM ESD event. In addition, failure analysis reveals that the failure on the test circuit under the board-level CDM ESD test is much severer than that under the chip-level CDM ESD test. Chapter concludes the achievement in this dissertation, and suggests several future works in this field. Since the standard for the board-level CDM ESD test is not established so far, the proposal of the “Test standard for board-level charged-device-model electrostatic discharge robustness of integrated circuits” (in Chinese) is presented in the appendix. In the proposal, the test methodology and test conditions are clearly defined. In this dissertation, several novel designs have been proposed in the aforementioned research topics. Measured results of fabricated test chips have demonstrated the performance improvement. The achievements of this dissertation have been published in several international journal and conference papers. Several innovative designs have been applied for patents. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009211699 http://hdl.handle.net/11536/67756 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.