标题: 前瞻非挥发性奈米晶体记忆体元件之制作与特性研究
Fabrication and Characterization of Advanced Nonvolatile Nanocrystals Memory
作者: 杨富明
罗正忠
张鼎张
电子研究所
关键字: 忍耐度;保存特性;记忆窗口;endurance;retention characteristic;memory window
公开日期: 2007
摘要: 本论文主要是针对非挥发性奈米点记忆体元件做研究。我们成功的制作出用钴作为奈米点的结构。钴奈米点包含在以二氧化矽以及二氧化铪分别当作穿遂氧化层和控制氧化层之间。通过电性分析,可以发现其具有明显的记忆效应。在5伏特的低操作电压下,其记忆窗口(memory window)约为1伏特左右。同时,其保存特性(retention characteristic)也相当惊人。而且,其忍耐度(endurance)在经过106次的写入/抹除之后,也没有衰退。
同时,我们也成功制作出以镍奈米点当作分离式电荷储存点记忆体,埋在二氧化矽以及二氧化铪之间的结构。由穿遂式显微镜得知,镍奈米点平均大小约为5奈米以及密度约为3.9□1012/cm2。镍奈米点记忆体,在4伏特的写入电压操作下,有1伏特的切入电压偏移(threshold voltage shift)。镍奈米点记忆体具有很长的保存时间(retention time),极少的电荷流失率(charge loss rate)。此外,记忆体的忍耐度即使到达106次的写入/抹除之后,也不会衰退的现象出现。
此外,我们也成功的制作以矽化钴当作奈米点的记忆体。矽化钴奈米点,埋在分别以二氧化矽以及二氧化铪为穿遂氧化层和控制氧化层之间。其中我们以电子绕射图样分析(electron diffraction pattern),确定奈米点为矽化钴。矽化钴奈米点记忆体,在9伏特的电压操作下有约为1.6伏特的切入电压偏移。具有很长时间的保存时间且很低的电荷流失率。忍耐度即使到达106次的写入/抹除之后也没有变差。
同时,我们也成功制作出以矽化镍奈米点在二氧化矽以及二氧化铪之间的结构。在电性方面的特性可以发现有很大的记忆窗口。在操作电压为4伏特的低电压下,很明显的得知有1.3伏特切入电压偏移。这种的结构的制程将与现今半导体业界的制程相符合。
最后,在论文中我们成功的制作出多层奈米点结构的记忆体。这种多层奈米点的记忆体的优点将提高记忆体的效应。藉着增加奈米点的密度可增进保存时间的特性。双层的奈米点记忆体比起单层的记忆体有更多的电子储存在里面。双层的矽化钴奈米点记忆体比单层的记忆体有更好的保存特性。然而,双层结构的记忆体之所以有较佳的保存特性是因为在上层的Coulomb-blockage 效应,使得底层的电子不易流失。所以,藉由双层的奈米点可以有效增进奈米点记忆体的记忆效应。
We have studied experimentally and theoretically nonvolatile nanocrystal memory devices. On the study of nanocrystal memory, the Co nanocrystals using SiO2 and HfO2 as the tunneling and the control dielectric with memory effect has been fabricated. A significant memory effect was observed through the electrical measurements. Under the low voltage operation of 5V, the memory window was estimated to ~ 1V. The retention characteristics were tested to be robust. Also, the endurance of the memory device was not degraded up to 106 write/erase cycles.
A distributed charge storage with Ni nanocrystals embedded in the SiO2 and HfO2 layer has been fabricated in this study. The mean size and aerial density of the Ni nanocrystals are estimated to be about 5 nm and 3.9□1012/cm2, respectively. The nonvolatile memory device with Ni nanocrystals exhibits 1 V threshold voltage shift under 4 V write operation. The device has a long retention time with a small charge lose rate. Besides, the endurance of the memory device is not degraded up to 106 write/erase cycles.
On the study of the CoSi nanocrystals with distributed charge storage elements embedded between the SiO2 and HfO2 layer has been proposed. The nanocrystals were identified to be CoSi phase by the analysis of electron diffraction pattern. The nonvolatile memory device with CoSi nanocrystals exhibits 1.6 V threshold voltage shift under 9 V write operation. The device has a long retention time with a small charge lose rate. In addition, the endurance is not degraded up to 106 write/erase cycles.
Also, a nonvolatile memory device with NiSi2 nanocrystals embedded in the SiO2 and HfO2 layer has been fabricated. A significant memory effect is observed on the characterization of the electrical properties. When a low operating voltage, 4V, is applied, a significant threshold-voltage shift of 1.3V, is observed. The processing of this structure is compatible with the current manufacturing technology of semiconductor industry.
Finally, the nonvolatile memory device with multilayer nanocrystals has advantages such as the memory effects can be increased by the increasing density of the nanocrystals and the whole retention characteristic can be improved. There are much more electrons that can be stored in the double layer than single layer nanocrystal memory device. The double layer CoSi2 nanocrystals have better retention characteristic than the single layer. The good retention characteristic of the double layer device is due to the Coulomb-blockage effects on the top layer nanocrystals from the bottom layer nanocrystals. So, the memory effects of the nonvolatile memory device can be improved by using the double layer nanocrystals.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009211820
http://hdl.handle.net/11536/67891
显示于类别:Thesis


文件中的档案:

  1. 182001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.