Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Cheng-Hsiungen_US
dc.contributor.authorYang, Ting-Huien_US
dc.contributor.authorYang, Chi-Ruen_US
dc.date.accessioned2014-12-08T15:08:57Z-
dc.date.available2014-12-08T15:08:57Z-
dc.date.issued2009-08-15en_US
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jde.2009.03.023en_US
dc.identifier.urihttp://hdl.handle.net/11536/6815-
dc.description.abstractIn this work we consider the diversity of traveling wave solutions of the FitzHugh-Nagumo type equations u(t) = u(xx) + f (u, w), w(t) = epsilon g(u, w), where f(u, w) = u(u - a(w))(1 - u) for some smooth function a(w) and g(u, w) = u - w. When a(w) crosses zero and one, the corresponding profile equation possesses special turning points which result in very rich dynamics. In [W. Liu, E. Van Vleck, Turning points and traveling waves in FitzHugh-Nagumo type equations. J. Differential Equations 225 (2006) 381-410], Liu and Van Vleck examined traveling waves whose slow orbits lie only on two portions of the slow manifold, and obtained the existence results by using the geometric singular perturbation theory. Based on the ideas of their work, we study the co-existence of different traveling waves whose slow orbits could involve all portions of the slow manifold. There are more complicated and richer dynamics of traveling waves than those of [W. Liu, E. Van Vleck, Turning points and traveling waves in FitzHugh-Nagumo type equations, J. Differential Equations 225 (2006) 381-410]. We give a complete classification of all different fronts of traveling waves, and provide an example to support our theoretical analysis. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleDiversity of traveling wave solutions in FitzHugh-Nagumo type equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jde.2009.03.023en_US
dc.identifier.journalJOURNAL OF DIFFERENTIAL EQUATIONSen_US
dc.citation.volume247en_US
dc.citation.issue4en_US
dc.citation.spage1185en_US
dc.citation.epage1205en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000267035500008-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000267035500008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.