Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Chih-Yuen_US
dc.contributor.authorLee, Chien-Chihen_US
dc.contributor.authorLin, Yi-Tangen_US
dc.contributor.authorHsieh, Chen-Yuen_US
dc.contributor.authorChen, Ming-Jeren_US
dc.date.accessioned2014-12-08T15:09:00Z-
dc.date.available2014-12-08T15:09:00Z-
dc.date.issued2009-08-01en_US
dc.identifier.issn0018-9383en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TED.2009.2024024en_US
dc.identifier.urihttp://hdl.handle.net/11536/6848-
dc.description.abstractOn a nominally 1.27-nm-thick gate oxide p-MOSFET with shallow trench isolation (STI) longitudinal compressive mechanical stress, hole gate direct tunneling current in inversion is measured across the wafer. The resulting average gate current exhibits an increasing trend with STI compressive stress. However, this is exactly contrary to the currently recognized trend: hole gate direct tunneling current decreases with externally applied compressive stress, which is due to the strain-altered valence-band splitting. To determine the mechanisms responsible, a quantum strain simulator is established, and its validity is confirmed. The simulator then systematically leads us to the finding of the origin: a reduction in the physical gate oxide thickness, with the accuracy identified down to 0.001 nm, occurs under the influence of the STI compressive stress. The strain-retarded oxide growth rate can significantly enhance hole direct tunneling and thereby reverse the conventional trend due to the strain-altered valence-band splitting.en_US
dc.language.isoen_USen_US
dc.subjectLayouten_US
dc.subjectmechanical stressen_US
dc.subjectMOSFETen_US
dc.subjectpiezoresistanceen_US
dc.subjectshallow trench isolation (STI)en_US
dc.subjecttunnelingen_US
dc.titleEnhanced Hole Gate Direct Tunneling Current in Process-Induced Uniaxial Compressive Stress p-MOSFETsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TED.2009.2024024en_US
dc.identifier.journalIEEE TRANSACTIONS ON ELECTRON DEVICESen_US
dc.citation.volume56en_US
dc.citation.issue8en_US
dc.citation.spage1667en_US
dc.citation.epage1673en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000268282400015-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000268282400015.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.