标题: 营利事业所得税逃漏税预测模式之比较研究
A Comparative Study of Different Models to Detect Tax Evasion
作者: 林坤渊
kuan_Yuan Lin
丁 承
Dr. Cherng G. Ding
经营管理研究所
关键字: 逃漏税;财务比率;类神经网路;因素分析;罗吉斯回归;复式抽样;重复测度分析;factor analysis;logistic regression;neural networks;repeated measure analysis;tax evasion
公开日期: 2001
摘要: 由于营利事业所得税是国家主要的税源之一,且该税之查核系采选案查核而非普查,在查审人力无法增加的限制下,如何从事该税逃漏之有效查缉值得深入探究!本研究透过22项财务比率差异与比值,组合类神经网路、因素分析及罗吉斯回归等三种计量方法,提出五种预测模式,并进行预测效果之实证比较。我们以财政部台湾省北区国税局辖区内的电子资讯产业及其八十六及八十七年税务资料为例,利用复式抽样法及重复测度分析,透过型一归类错误率 (系反映未能侦测实际逃漏税之风险)、型二归类错误率 (系反映查缉实际未逃漏税之风险) 及整体归类错误率 (系反映型一及型二之综合风险) 三项指标评估五种预测模式之效果。研究结果显示,直接以 22 项财务变数纳入类神经网路模式中之预测效果最佳,但却无法获悉具显着预测能力之财务变数。除预测效果外,协助查审人员设定查缉方向亦是诉求重点,基于此一观点,并根据研究结果,我们提供了一些实务上的应用建议。
Business income tax evasion has been a very popular and serious problem. A direct way to reduce tax evasion is to enhance auditing. Owing to limited resources, it seems hard to increase auditors. Therefore, how to effectively predict if a tax evasion will occur becomes important. The purpose of this study is to conduct comparisons of performance among different prediction approaches, and then find out the most effective one.
Five prediction approaches by means of neural networks, factor analysis and logistic regression are used. They are based on 22 financial variables. The overall prediction error rate, Type I prediction error rate, and Type II prediction error rate serve as prediction performance criteria. Using Bootstrapping sampling and repeated measures analysis, the approach of neural network based on 22 financial variables was found to be the most effective. However, variables possessing explanatory power cannot be identified by the approach. Factor analysis on 22 financial variables, followed by stepwise logistic regression, is suggested to help with critical variable selection.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT900457026
http://hdl.handle.net/11536/69029
显示于类别:Thesis