標題: | 劉孔驪 On Some Dynamical Properties of Interval Maps |
作者: | 劉孔驪 Kong-Li Liu 莊重 Jonq Juang 應用數學系所 |
關鍵字: | 區間函數之動態性質;Dynamical Properties of Interval Maps |
公開日期: | 2001 |
摘要: | 關於一維區間函數的一些動態性質
研究生 : 劉孔驪 指導教授 : 莊 重 博士
國立交通大學
應用數學系
摘 要
此論文包含三章。第一章的主題是針對單峰函數 來討論此一集合{x belongs to I:S(x)=K(f)} 。首先,我們考慮各種可能的狀態。而達到我們目的的主要手法,是來自於定理1.2.10的證明中所介紹的證明技巧。其次,我們專注於二次函數族 fr(x)=rx(1-x) (quadratic family),使用了重新正規化的技巧(renormalization techniques),導出當二次函數族在歷經倍週期分歧(period-doubling bifurcation)的過程時,其所對應之集合 {x belongs to I:S(x)=K(fr)}的精確形式為何。
在第二章中,我們專注在檢驗書本[1]之1.11及1.19節裡,關於“許瓦爾茲迅導數小於零(Schwarzian derivative of Sf < 0) ”的一些推論是否仍然成立,倘若將其替代為“ 在區間 中有敏感度( f has sensitive dependence on initial data on I )”的話。在最後一章裡,我們首先將推廣1.18([1])節中的定義並使用米勒和舍斯頓(Milnor and Thurston)([4])所創造的符號。除此之外,我們也發現了確保分段單調函數(piecewise-monotone map)的符號序列(symbolic sequence)是許可的(admissible)充份條件。最後,有關分段單調函數之週期點所成集合的結果聲明與斷言亦包過括於本章中。 On Some Dynamical Properties of Interval Maps Student: Kong-Li Liu Adviser: Jonq Juang Department of Applied Mathematics National Chiao Tung University Hsinchu 30050, Taiwan, R.O.C. Abstract The dissertation contains three chapters. The topic of chapter 1 is to discuss the set {x belongs to I:S(x)=K(f)} for a unimodal map. First, we consider all possible scenarios. The main techniques to achieve so are those introduced in the proof of Theorem 1.2.10. Let fr(x)=rx(1-x) be the quadratic map. We then use renormalization techniques to derive the precise form of the set {x belongs to I:S(x)=K(fr)} as the family of fr undergoes period doubling bifurcation. In chapter 2, we devote our attention to checking whether some conclusions concerning the assumption " Sf<0 on I " in §1.11, §1.19([1]) still hold if we substitute it for "sensitivity on initial data on I." In the third chapter, we will first provide the generalization of definitions in §1.18([1]) and use the notations developed by J. Milnor and W. Thurston([4]) throughout this chapter. Moreover, we derive a sufficient condition to guarantee the admissibility of symbolic sequences associated with piecewise-monotone maps(i.e. l-modal maps, l>1 ). Additionally, some assertions about the set of periodic points of such maps will be included. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT900507019 http://hdl.handle.net/11536/69315 |
顯示於類別: | 畢業論文 |