标题: | 一 种 指 纹 分 类 之 研 究 A study on Fingerprint Classification |
作者: | 叶俊男 Chun-Nan Yeh 陈玲慧 Ling-Hwei Chen 资讯学院资讯学程 |
关键字: | 指纹;分类;特征点;fingerprint;classification;singularity |
公开日期: | 2001 |
摘要: | 指纹分类为指纹系统提供了一种重要的索引机制. 一个正确的指纹分类能大大的降低寻找时间于一个大型的资料库系统.本论文提出一种指纹分类的方法. 在我们提出的方法里, 将指纹归于五类, 即为Arch, left loop, right loop, whorl, and tented arch.本论文的方法的主要步骤有指纹图像加强,方向矩阵的萃取,特征点的萃取,分类. 最后我们共用了1900 枚姆指指纹做测试, 实验结果得到88 % 的分类正确率. Fingerprint classification provides an important indexing mechanism in a fingerprint database. An accurate and consistent classification can greatly reduce the fingerprint matching time for a large database. In this thesis, we present a new classification method for fingerprint images. In the proposed method, we classify fingerprints into five classes: arch, left loop, right loop, whorl, and tented arch. The major steps of this method include image enhancement, direction matrix extraction, singular points extraction and classification. Finally, we use the 1900 thumb fingerprints of NIST-4 database to evaluate the performance of the proposed method. The experimental result shows that we are able to achieve a classification accuracy of 88 percent (with 10% rejection). |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT901706021 http://hdl.handle.net/11536/69652 |
显示于类别: | Thesis |