完整後設資料紀錄
DC 欄位語言
dc.contributor.author張心眉en_US
dc.contributor.authorHsin-Mei Changen_US
dc.contributor.author莊 重en_US
dc.contributor.authorJuang Jonqen_US
dc.date.accessioned2014-12-12T02:31:28Z-
dc.date.available2014-12-12T02:31:28Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910507004en_US
dc.identifier.urihttp://hdl.handle.net/11536/70937-
dc.description.abstract考慮二維的函數T( x, y ) = ( y, F(y) – bx). 此處的F是一個三片的線性函數所結合而成的函數。第一個部分我們證明出T的Semiconjugate 條件可推得Smale Horseshoe的存在,接下來將此定理應用在一維的CNNs上。此時的混沌現象是發生在所謂的 [3,3] 區。第二個部分的結果是藉由L. S. Young 的論文證明出T在某些參數範圍內會有Bowen-Reulle-Sinai 測度,這是另一種觀點的混沌現象,將其應用在CNNs中,這些參數產生在 [3,3], [3,2], [2,3] 中的某些部分。zh_TW
dc.description.abstractOf concern is a two-dimensional map T of the form. T( x , y ) = ( y , F(y) – bx ). Here F is a three-piece linear map. This thesis contains two parts. In part one, we first prove a theorem which states that a semiconjugate condition for T implies the existence of Smale horseshoe. Second, the theorem is applied to show the spatial chaos of one-dimensional Cellular Neural Networks. We improve a result of Hsu [2000]. Such horseshoe type of chaos corresponds to the spatial chaos in the so called [3,3] region which has spatial entropy ln 2 . In part two, a Theorem of L. S. Young is used to show that in certain parameters' range T has a Bowen-Reulle-Sinai measure. In the case of CNNs, this amounts to the fact that whenever the parameters are in the parts of [3,3], [3,2], and [2,3], then the spatial chaos of one-dimensional Cellular Neural Networks exists in the Bowen-Reulle measure's sense.en_US
dc.language.isoen_USen_US
dc.subject二維度的函數zh_TW
dc.subject類神經網路zh_TW
dc.subjectPiecewiseen_US
dc.subjectTwo Dimensional Mapsen_US
dc.subjectCellular Neural Networksen_US
dc.subjectSmale Horseshoeen_US
dc.subjectBowen-Reulle-Sinai measureen_US
dc.subjectSemiconjugateen_US
dc.subjectconjugateen_US
dc.title二維度的函數及其在類神經網路的應用zh_TW
dc.titlePiecewise Two Dimensional Maps and Applications to Cellular Neural Networksen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 050700401.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。