標題: 不同種類的立方漢米爾頓圖
Cubic Hamiltonian Graphs of Various Types
作者: 徐恭銘
Kung-Ming Hsu
徐力行
陳秋媛
Lih-Hsing Hsu
Chiuyuan Chen
應用數學系所
關鍵字: 漢米爾頓;漢米爾頓連通;平面圖;hamiltonian;hamiltonian connected;planar
公開日期: 2002
摘要: 令U為連通的平面的立方漢米爾頓圖所成之集合,A為U中所有漢米爾頓的單點漢米爾頓圖所成之集合,B為U中所有單邊漢米爾頓圖所成之集合,C為U中所有漢米爾頓連通圖所成之集合。根據集合A、B與C互斥與交集的運算,U被分成8個集合。在這一篇文章中我將要證明這8個集合為無限的。
Let U be the set of connected planar cubic hamiltonian graphs, A be the set of hamiltonian 1-vertex hamiltonian graphs in U, B be the set of 1-edge hamiltonian graphs in U, and C be the set of hamiltonian connected graphs in U. With the and/or exclusion of the sets A,B, and C, U is divided into eight subsets. In this paper, we prove that there are infinitely many elements in each of the eight subsets.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT910507014
http://hdl.handle.net/11536/70947
Appears in Collections:Thesis