标题: 尺寸效应与界面热阻对超晶格奈米线热传导之影响
Inflience of Size Effects and Interface Thermal Resistance on Heat Conduction of Superlattice Nanowires
作者: 胡东洲
曲新生
机械工程学系
关键字: 尺寸效应;超晶格奈米线;热传导系数;Size effects;Superlattice nanowires;Thermal conductivity
公开日期: 2004
摘要: 本文应用二维圆柱座标声子辐射热传方程式,搭配修正后的声子平均自由径,模拟奈米线内部的热传问题;且进一步应用非弹性散异理论模式的假设,模拟界面热阻对超晶格奈米线热传之影响。本文主要在探讨温度、几何尺寸、界面热阻及材料组成比率对超晶格奈米线等效热传导系数之影响,以提供作为未来发展热电材料的依据。本文研究发现利用本文修正后的声子平均自由径,超晶格奈米线的等效热传导系数降低了约三分之一到二分之一左右。且超晶格奈米线的等效传导系数受到径向及轴向尺寸效应的双重影响,随着周期厚度及直径的缩小而降低。当超晶格奈米线周期厚度小于直径时,界面热阻在总热阻中所扮演的角色随着周期厚度的缩小,越来越重要,此为“超晶格结构”的特征;反之,当周期厚度大于直径时,界面热阻随着周期厚度的增加而急遽下降,此时超晶格奈米线内部的热传行为趋近于“奈米线结构”,其等效热传导系数随着低热传导系数含量的减少而降低。
The size effects on thermal conductivity of superlattice nanowires with circular cross-section are investigated. The effective thermal conductivity of superlattice nanowires is predicted by using equation of phonon radiative transfer. The inelastic mismatch model (DMM) is applied to simulate the interface thermal resistance. The effective thermal conductivity of superlattice nanowires is dependent on temperature, the diameter, the periodic length and the volumetric fraction of the constituent materials. The results show that the effective thermal conductivity of Si/Si0.9Ge0.1 superlattice nanowire is reduced by a factor of 3 or 2 by correcting phonon mean free path. As the result of radial and axial size effects, the effective thermal conductivity of superlattice nanowires decreases with reduction of the diameter and the periodic length. When the periodic length is smaller than the diameter, the interface thermal resistance plays an important role on heat conduction of superlattice nanowires, however, as the periodic length increases, the dominative degree of interface thermal resistance gets more and more slight. When the periodic length is smaller than the diameter, the heat conduction of the superlattice nanowire is analogy to of the nanowire. In this regime, the lower the atomic percentage of low thermal conductivity material is, the lower the effective thermal conductivity of superlattice nanowires. The results of this study can be used to develop high efficiency thermoelectric materials.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009214535
http://hdl.handle.net/11536/71336
显示于类别:Thesis


文件中的档案:

  1. 453501.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.