標題: 平面普修流之非線性不穩定
Nonlinear Instability of Plane Poiseuille Flow
作者: 洪英棋
Ying-Chi Hung
楊文美
Wen-Mei Yang
機械工程學系
關鍵字: 普修流;Poiseuille Flow
公開日期: 2005
摘要: 普修流是流體力學中最基本也是最重要的問題,當學者們發展出新的實驗方法或是數值方法,普修流為驗證新方法正確性的依據。本文以數值方法探討普修流在非線性擾動作用下的行為,在數值方法上,吾人先以複數形式的Fourier級數對x方向展開,在y方向則選用具有高精確度及收斂快速特性的契比希夫多項式(Chebyshev polynomials)來對空間座標作雙重級數展開,並以Collocation Method與Galerkin Approximation將方程式轉換為代數方程式,並將代數方程式中時間非線性項利用Adam- Bashforth Method作離散化,而線性項則採用Crank-Nicolson Method處理。 本文中以改變雷諾數的大小來觀察流場隨時間的變化,結果發現,流場在低雷諾數時擾動會隨著時間呈現快速收斂,提高雷諾數,流場擾動行為變為劇烈,收斂至穩定值的時間也隨之增加。而在臨界雷諾數 =5772.22時,擾動不再隨著時間收斂至定值,呈現單一週期性的狀態。當超過臨界雷諾數在Re=6000~10000範圍內,流場會隨著雷諾數的增加使擾動的行為變為劇烈,此時會產生第二個不相干的頻率,呈現擬週期性運動。隨著雷諾數提升至11000時,流場擾動的更加劇烈,且呈現出微弱的混沌現象,當雷諾數為12900時,流場擾動混亂無法判讀,此時流場混沌現象更加劇烈。
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009214543
http://hdl.handle.net/11536/71413
顯示於類別:畢業論文


文件中的檔案:

  1. 454301.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。