完整後設資料紀錄
DC 欄位語言
dc.contributor.author吳怡正en_US
dc.contributor.authorWu, Yi-Jengen_US
dc.contributor.author施仁忠en_US
dc.contributor.authorShih, Zen-Chungen_US
dc.date.accessioned2014-12-12T02:34:10Z-
dc.date.available2014-12-12T02:34:10Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070056618en_US
dc.identifier.urihttp://hdl.handle.net/11536/72104-
dc.description.abstract在渲染真實的相機影像時,兩種現象是很常見的:動態模糊(motion blur)與景深模糊(defocus blur)。我們提出了一個針對動態與景深模糊在隨機光柵化技術下的裁切空間(clip-space)採樣點剔除技術。這個二階段的測試利用裁切空間下的資訊去降低我們需要做的覆蓋測試採樣點數量,包含鏡頭座標與時間座標下的所有採樣點。 首先我們做一個簡略的測試取得保守的鏡頭座標範圍值,並去除在此範圍之外的採樣點。在第二階段的測試時我們在裁切空間下針對每個三角形頂點找出xyuvt空間的相似三角形的關係,藉由此三角方程式去剔除不屬於此範圍內的採樣點。本篇論文提供了在即時運算的隨機光柵化中的簡單採樣點剔除方法,並且在少量的運算下可達到良好的採樣點測試效率(sample test efficiency)。zh_TW
dc.description.abstractTo render realistic camera images, two effects are common : motion blur and defocus blur. We present a novel clip space culling test of stochastic rasterization of motion and defocus blur. This 2-stage test use the clip space information to reduce the samples needed to be coverage tested over camera lens domain (uv) and time domain (t). First we do a rough test to get a conservative range of the camera lens uv bound, and cull the samples outside this bound. Then the second test finds a similar triangular equation for each triangle vertex in xyuvt space. Based on this equation, we cull the rest of samples outside. We present a simple method for the real-time stochastic rasterizer, and achieve a good sample test efficiency with low computation cost.en_US
dc.language.isoen_USen_US
dc.subject隨機光柵化zh_TW
dc.subject動態模糊zh_TW
dc.subject景深模糊zh_TW
dc.subjectStochastic Rasterizationen_US
dc.subjectMotion Bluren_US
dc.subjectDefocus Bluren_US
dc.title隨機光柵化在裁切空間下採樣點剔除技術zh_TW
dc.titleClip Space Sample Culling for Stochastic Rasterizationen_US
dc.typeThesisen_US
dc.contributor.department多媒體工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 661801.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。