完整後設資料紀錄
DC 欄位語言
dc.contributor.author姜智軒en_US
dc.contributor.authorJiang, Zhi-Xuanen_US
dc.contributor.author林志忠en_US
dc.contributor.authorLin, Juhn-Jongen_US
dc.date.accessioned2014-12-12T02:34:46Z-
dc.date.available2014-12-12T02:34:46Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070052718en_US
dc.identifier.urihttp://hdl.handle.net/11536/72395-
dc.description.abstract我們本次實驗的材料是含有銅矽化合物奈米顆粒的矽奈米線,且銅矽化合物奈米顆粒(2~5 nm)是無序分布在奈米線當中。我們測量了電阻率對溫度的關係,我們發現電阻率越大的樣品,電子的傳導方式越接近activated law,而電阻率較小的樣品,我們發現電子的傳導方式越來越趨近Efros-Shklovskii T^(-1/2) variable range hopping (VRH)的機制,也間接證實了電子或許有co-tunneling現象。而對於電阻率最低的樣品而言,我們更進一步看到了符合Mott T^(-1/4) VRH的行為。對於未來的工作,若再進一步分析I-V curves將可以得到更明確的結論。zh_TW
dc.description.abstractThe material of our experiment is Si nanowires containing copper silicide nanoparticles, and the nanoparticles are randomly distributed in nanowires. We measured the correlation of resistivity and temperature. We found that for samples containing higher resistivity, electronic diffusion follows activated laws. For having lower resistivity samples, the transport properties follow Efros-Shklovskii T^(-1/2) variable range hopping (VRH) laws. This feature may verify electrons cotunneling in nanowires. For sample having the lowest resistivity, we further found the Mott T^(-1/4) VRH laws. As a future work, we can analyse I-V curves and perhaps we would get more definite conclusion.en_US
dc.language.isozh_TWen_US
dc.subject跳躍傳導zh_TW
dc.subject顆粒系統zh_TW
dc.subject奈米線zh_TW
dc.subject共同穿隧zh_TW
dc.subjectHopping conductionen_US
dc.subjectGranular systemen_US
dc.subjectNanowireen_US
dc.subjectCotunnelingen_US
dc.title含有銅奈米顆粒之矽奈米線之跳躍傳導行為研究zh_TW
dc.titleHopping conduction in Si nanowires containing Cu nanoparticlesen_US
dc.typeThesisen_US
dc.contributor.department物理研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 271801.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。