Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Ming-Chia | en_US |
dc.contributor.author | Lyu, Ming-Jiea | en_US |
dc.date.accessioned | 2014-12-08T15:09:37Z | - |
dc.date.available | 2014-12-08T15:09:37Z | - |
dc.date.issued | 2009-04-15 | en_US |
dc.identifier.issn | 0022-247X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jmaa.2008.11.021 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/7364 | - |
dc.description.abstract | In this article, we show that if f has a snap-back repeller then any small C(1) perturbation of f has a snap-back repeller, and hence has Li-Yorke chaos and positive topological entropy, by simply using the implicit function theorem. We also give some examples. (C) 2008 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Snap-back repeller | en_US |
dc.subject | Implicit function theorem | en_US |
dc.subject | Li-Yorke chaos | en_US |
dc.subject | Topological entropy | en_US |
dc.title | A simple Proof for persistence of snap-back repellers | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jmaa.2008.11.021 | en_US |
dc.identifier.journal | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | en_US |
dc.citation.volume | 352 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 669 | en_US |
dc.citation.epage | 671 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000264730200010 | - |
dc.citation.woscount | 3 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.