Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:09:37Z-
dc.date.available2014-12-08T15:09:37Z-
dc.date.issued2009-04-15en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2008.11.020en_US
dc.identifier.urihttp://hdl.handle.net/11536/7367-
dc.description.abstractWe prove that, for a function f in H(infinity) of the unit disc with parallel to f parallel to(infinity) <= 1, the existence of an operator T on a complex Hilbert space H with its numerical radius at most one and with parallel to f(T)x parallel to = 2 for some unit vector x in H is equivalent to that f be an inner function with f (0) = 0. This confirms a conjecture of Drury [S.W. Drury, Symbolic calculus of operators with unit numerical radius, Linear Algebra Appl. 428 (2008) 2061-2069]. Moreover, we also show that any operator T satisfying the above conditions has a direct summand similar to the compression of the shift S(phi), where phi(z) = zf(z) for vertical bar z vertical bar < 1. This generalizes the result of Williams and Crimmins [J.P. Williams, T. Crimmins, On the numerical radius of a linear operator, Amer. Math. Monthly 74 (1967) 832-833] for f (z) = z and of Crabb [M.J. Crabb, The powers of an operator of numerical radius one, Michigan Math. J. 18 (1971) 253-256] for f(z) = z(n) (n >= 2). (C) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNumerical rangeen_US
dc.subjectNumerical radiusen_US
dc.subjectNumerical contractionen_US
dc.subjectCompression of the shiften_US
dc.titleInner functions of numerical contractionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2008.11.020en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume430en_US
dc.citation.issue8-9en_US
dc.citation.spage2182en_US
dc.citation.epage2191en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000264864400025-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000264864400025.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.