Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gau, Hwa-Long | en_US |
dc.contributor.author | Wu, Pei Yuan | en_US |
dc.date.accessioned | 2014-12-08T15:09:37Z | - |
dc.date.available | 2014-12-08T15:09:37Z | - |
dc.date.issued | 2009-04-15 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2008.11.020 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/7367 | - |
dc.description.abstract | We prove that, for a function f in H(infinity) of the unit disc with parallel to f parallel to(infinity) <= 1, the existence of an operator T on a complex Hilbert space H with its numerical radius at most one and with parallel to f(T)x parallel to = 2 for some unit vector x in H is equivalent to that f be an inner function with f (0) = 0. This confirms a conjecture of Drury [S.W. Drury, Symbolic calculus of operators with unit numerical radius, Linear Algebra Appl. 428 (2008) 2061-2069]. Moreover, we also show that any operator T satisfying the above conditions has a direct summand similar to the compression of the shift S(phi), where phi(z) = zf(z) for vertical bar z vertical bar < 1. This generalizes the result of Williams and Crimmins [J.P. Williams, T. Crimmins, On the numerical radius of a linear operator, Amer. Math. Monthly 74 (1967) 832-833] for f (z) = z and of Crabb [M.J. Crabb, The powers of an operator of numerical radius one, Michigan Math. J. 18 (1971) 253-256] for f(z) = z(n) (n >= 2). (C) 2008 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Numerical range | en_US |
dc.subject | Numerical radius | en_US |
dc.subject | Numerical contraction | en_US |
dc.subject | Compression of the shift | en_US |
dc.title | Inner functions of numerical contractions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2008.11.020 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 430 | en_US |
dc.citation.issue | 8-9 | en_US |
dc.citation.spage | 2182 | en_US |
dc.citation.epage | 2191 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000264864400025 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.