标题: 高功率边射型与光子晶体面射型 雷射二极体之研究
Study of High Power Edge Emitting and Photonic Crystal Surface Emitting Laser Diodes
作者: 洪志苍
Hung, Chih-Tsang
卢廷昌
Lu, Tien-Chang
光电工程研究所
关键字: 边射型雷射二极体;面射型光子晶体雷射二极体;Edge Emitting Laser Diode;Photonic Crystal Surface Emitting Laser Diode
公开日期: 2013
摘要: 本篇论文旨在研究以砷化镓系列材料为基础所设计制做之雷射元件,其中包含高功率边射型雷射与面射型的光子晶体雷射。关于边射型雷射,主要研究为探讨结构上的光场局限对于雷射特性的影响。在条状窄波导的边射型雷射中可分别藉由纵向与横向局限的最佳化调整,使元件特性提升并达到单模态操作的高功率输出。在垂直方向的光局限上,我们采用GRIN-DBSCH的磊晶设计制作出830nm AlGaAs/InGaAs 雷射二极体,其于高功率操作下具有极小的远场发散角而特征温度性质也获得改善。在DBSCH结构设计下于光波导层与披覆层间插入多阶段的渐变结构使得载子局限提升并有效避免漏电流的发生,而近场端光模态的扩张可以使雷射镜面出光处的功率密度下降,此对雷射高功率操作大有助益,最大的输出功率可达21.5 MW/cm2并且提供优异的特征温度特性。而水平方向的光局限实验方面,我们使用高反射率多层膜的介电披覆层设计可使AlGaInP-GaInP量子井雷射二极体光电特性提升并且维持在一个稳定的远场发散输出。三对高低折射率的多层膜批覆层不但可改善金属吸收效应,高反射介面也能减少散射提升雷射输出效率,高散热系数的Al2O3/Ta2O5可改善元件散热使其稳定的操作于高功率下。其室温工作下远场发散角为16.4∘,临界电流与特征温度分别为44.5mA和104.2K。
关于光子晶体结构于光电雷射元件上特性及应用之探讨,我们以AlGaAs-InGaAs量子井雷射结构为基础,利用转移矩阵法(transfer matrix method)及耦合波理论(coupled-wave theory)先探讨于主动层附近不同磊晶层厚度对于阀值增益变化的对应关系。此部分的研究着重于¬¬¬¬¬¬¬¬¬面射型出光的Γ1能带。此外,光子晶体结构的填充因子也一并列入研究范围。经过一系列的优化演进,最终结果显示,对于砷化镓光子晶体面射型雷射而言,光子晶体层的垂直光学局限率可大幅提高至12.6%,且结构的阀值增益骤降至50 cm-1左右。此外,为了更加强光子晶体与光场间的耦合作用,我们于p/n磊晶披覆层导入了非对称组成,该设计可使光子晶体的光学局限率再上升至13.94%,对应的阀值增益亦降至19.45 cm-1。最后,我们也针对模态频谱分布与元件电特性做了一些延伸探讨。
In this thesis, we investigated the device characteristics of semiconductor lasers fabricated from GaAs-based materials, which including high-power edge emitting laser diodes (EELs) and Photonic Crystal Surface Emitting Lasers (PCSELs). The relationship of optical confinement and laser performance is the main topic in the EEL researches. By optimizing the vertical and horizontal confinement factors in narrow-stripe ridge waveguide structures separately, the laser performance of EEL devices can be enhanced and it contributes to arriving high-power single mode operation. As regards the optimization of vertical optical confinement, 830-nm AlGaAs/InGaAs laser diodes (LDs) adopting multi-step graded index double barrier separate confinement heterostructures (GRIN-DBSCH) with small divergence beams and improved temperature characteristics under a high output power operation are reported. The double barrier separate confinement heterostructure (DBSCH) design provides good carrier confinement and prevents current leakage by adding a multi-step grading layer between cladding and waveguide layers. Meanwhile, the DBSCH design can facilitate to reduce the divergence angle at high power operation and widen the transverse mode distribution to decrease the power density around emission facets. The maxima optical power densities of 21.5 MW/cm2 per laser facet and good characteristic temperature values of threshold current (T0) and slope efficiency (T1) have been achieved. About the investigation of horizontal optical confinement, we demonstrate a high power AlGaInP-GaInP multi quantum wells (MQWs) LD adopted a high-reflectivity passivation to enhance the LI characteristics and keep a suitable far-field divergence angle simultaneously. Under the design of three-pair optical thin films, it cannot only avoid the metal absorption but also enhance emitting efficiency and heat dissipation by using a high reflective and good thermal conductive Al2O3/Ta2O5 multilayer. The measured room-temperature threshold current (Ith) and characteristic temperature (T0) can be arrived 44.5mA and 104.2K at 16.4∘far-field divergence.
In the second part research of Photonic crystal, we have presented an AlGaAs-InGaAs multi quantum wells (MQWs) photonic crystal surface emitting lasers (PCSELs) by using the transfer matrix method and coupled wave method to achieve a low threshold operation. We first studied the influence of various thicknesses on different layers around active region in AlGaAs-based laser structure. The investigation has been especially focused on the band edge at Γ1 point because of the characteristic of photonic crystal (PC) surface emitting. The relationship between the threshold gain and filling factor had also been considered. After optimizing the structure of waveguide layers, the best value of vertically optical confinement factor of PC in the optimized AlGaAs-based PCSELs is calculated to be 12.6% and the threshold gain is reduced to 50 cm-1. To keep enhancing the coupling effect between optical mode profile and PC region, asymmetric design of p/n cladding layers is adopted under the above-mentioned AlGaAs-based laser structure. The extremely low threshold gain is achieved by adopting an asymmetric cladding layer design to enhance both of the vertical optical confinement factors for the quantum wells and photonic crystal. The optimized value of vertically optical confinement factor of PC layer is 13.94% and the corresponding threshold gain can be as low as 19.45 cm−1. In addition, we made some extended investigation about mode spectra identification and electrical property discussion.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079524811
http://hdl.handle.net/11536/74103
显示于类别:Thesis