标题: 行动宽频网路之省电与资源管理
Power and Resource Management in Mobile Broadband Networks
作者: 陈建志
Chen, Jen-Jee
曾煜棋
Tseng, Yu-Chee
资讯科学与工程研究所
关键字: 通话允许控制;换手;IEEE 802.11;IEEE 802.16e;行动通讯;行动计算;行动管理;省电管理;省电类别;推播机制;服务品质;资源管理;无线宽 频存取;无线网路;call admission control (CAC);handoff;IEEE 802.11;IEEE 802.16;mobile communication;mobile computing;mobility management;power management;power saving class (PSC);push mechanism;quality of service (QoS);resource management;wireless broadband access;wireless network
公开日期: 2009
摘要: 近年来,无线宽频存取越来越受欢迎,在所有的无线数据存取技术里,IEEE 802.11无线区域网路提供一个简单而且省钱的方式让使用者可以自己建立他们的区域网路,而IEEE 802.16e无线都会网路则提供一个无线存取方案来替代目前以有线电缆作为最后一哩存取网际网路的方式。对于行动无线用户而言,高速宽频、服务品质保证、连续而无缝的网路存取、与无线终端设备的续航力一直都是在无线网路上的重要议题,本篇论文专注于行动宽频网路之省电与资源管理,主要包括三项议题:第一项议题中,我们提出一个行动宽频网路的架构,这个架构上的行动闸道器可以同时备配多个无线介面同时连上网际网路,藉着这样的设计,可以提供一群行动用户无线宽频的存取服务;第二项议题中,我们讨论在行动宽频网路上的资源管理议题,思考如何分配无线资源以及如何管理使用者的移动使得正在进行中的资料流可以获得品质服务保证并且连线不会中断;最后,在第三项议题中,我们讨论行动宽频网路上省电管理的问题,针对行动闸道器和行动用户装备IEEE 802.16e无线介面的情况下,我们研究其省电类别管理问题。
在第一项议题中,我们发展了一个行动宽频网路的架构以提供一群在行动网路中的行动用户宽频的无线存取以及网路的行动管理,这个行动宽频网路的网路行动管理是藉由SIP (session initiation protocol)来达成的,而行动网路内的使用者则以行动随意网路的方式在内部组成一个连结的网路,这个行动随意网路透过一个网路内的行动闸道器存取网际网路,而行动闸道器上对内装备了数个IEEE 802.11介面来与内部网路连结,对外则同时装备了多个无线介面来存取网际网路,这些对外介面可以是IEEE 802.11、WiMAX、PHS、或者三代或三•五代的无线介面,藉着同时整合多种不同的无线介面来连结外部网路,内部行动用户得以享有宽频无线存取的服务。
在第二项议题中,我们首先利用SIP信令所夹带的通话描述资讯设计通话允许控制以及资源管理机制,接着,考虑因为移动和无线频道的多变性所产生的换手以及无线网路的多重速率调变,我们进一步对资源管理机制提出改善,观察到现在的无线媒体控制层均支援服务品质机制和通话允许控制,对我们而言,整合应用层的服务品质资讯和媒体控制层的服务品质机制来设计一个跨层的资源管理机制是十分有吸引力的,所以我们设计了一考量换手和多重速率调变的跨层资源管理机制,在此机制中,当无线资源很拥挤的时候,我们可以藉由改变已存在的通话的编解码和讯框速率动态的调整它们的资源的分配,这么一来,不只是遭遇无线频道品质劣化的通话其通话品质得以舒解,网路也可以接受更多的连线,除此之外,为了确保行动用户的服务连续性,我们并且提出一个适用于包含认证加密机制的无线网路的无缝式换手机制。
在第三项议题中,我们针对的是IEEE 802.16e无线介面的省电类别管理问题,这个问题当行动用户装备的是IEEE 802.16e无线介面而且透过作为中继传播的行动闸道器连到网际网路时会发生,针对IEEE 802.16e,我们设计了四个省电类别管理演算法,四个演算法中,三个针对单一行动装置的省电类别管理机制,一个则针对同时多个行动装置的省电类别管理机制;对于单一行动装置,IEEE 802.16e定义省电类别来管理它的睡眠,但是标准并没有描述如何为资料流定义和管理省电类别,而现存的研究仅考虑所有的资料流中最小的延迟限制来规划单一或多个行动装置的睡眠。针对单一行动装置,我们提出同时使用多个省电类别来规划行动装置的睡眠,每一个省电类别均考虑到资料流的特性,这么一来,我们可以为行动装置预备更准确的资源减少浪费并且使得行动装置可以睡得更多;同样的动机,对于多个行动装置的情况,我们亦设计针对每个行动装置的服务品质特性来安排他们的睡眠,如此一来可以节省更多的能源以及更有效率的运用频宽。
In the recent years, wireless broadband access is gaining more popularity. Among all wireless data access technologies, the IEEE 802.11 WLANs (wireless local area networks) provide an easy and low cost solution for users to build their own local area networks while the IEEE 802.16 WMANs (wireless metropolitan area networks) provide a wireless solution to substitute the wire line last-mile Internet access. For mobile wireless users, high data rate, QoS (quality of service) guaranteed and continuous access, and long device operation time are always important issues for wireless networks. In this dissertation, we study the power and resource management in mobile broadband networks, which is composed of three major works. In the ‾rst work, we propose a mobile broadband network architecture which provides a group of mobile users broadband wireless access by attaching multiple wireless interfaces on the mobile gateway. In the second work, we discuss the resource management issue over the mobile broadband networks which considers how to manage wireless resource distribution and user mobility such that an on-going call can have guaranteed QoS and continuous connectivity. Finally, in the third work, we discuss the power management issue over the mobile broadband networks which studies the power saving class (PSC) management problem for the mobile gateway and mobile users which are equipped with IEEE 802.16e interfaces.
In the first work, we develop a mobile broadband network architecture to provide broadband wireless access and support network mobility for a group of mobile users inside the network, where the mobility management is maintained by SIP (session initiation protocol). We propose to form a mobile ad hoc network (MANET) by a group of mobile stations (MSs). The MANET is connected to the outside world via a mobile gateway, which connects to the intra MANET by some IEEE 802.11 interfaces and attaches to the Internet through more external wireless interfaces (such as IEEE 802.11, WiMAX, PHS, and 3/3.5G interfaces). By aggregating multiple external interfaces of different wireless technologies in the gateway, mobile users are allowed to have a broadband wireless access.
In the second work, we propose to design resource management mechanism by exploiting the session information carried by the SIP messages. Then, considering handoff and physical rate adaptation issues caused by mobility and wireless channel variation, we further enhance the resource management mechanism. Observing that current wireless MAC protocols all support QoS and CAC (call admission control), it is attractive to us to design a cross-layer resource management mechanism by integrating the QoS information from the application layer and the QoS mechanisms supported by the MAC layer. The proposed cross-layer scheme takes handoff and multi-rate environment into consideration. When wireless resource is stringent, we can dynamically adjust the resource distribution among existing calls by controlling their supporting codecs and frame rates. This not only takes care of calls in bad channel conditions, but also can accept more calls. In addition, to maintain continuous network continuity during handoff, we also develop a seamless post-handoff mechanism for secured wireless networks.
In the last work, we focus on the PSC management problem for IEEE 802.16e interfaces. This issue happens to the mobile broadband networks when the mobile gateway acts as an IEEE 802.16 relay and the mobile users are equipped with IEEE 802.16e interfaces to access the Internet via the gateway. In this part, we propose four PSC management algorithms for IEEE 802.16e wireless networks. In the four schemes, three consider a base station (BS)-MS pair, one refers to multiple MSs under a BS. For each individual MS, IEEE 802.16e defines PSCs to manage its sleep. However, the standard does not describe how to define and manage PSCs for flows. Existing works all consider only the strictest delay bound among flows to control the sleep of single or multiple MSs. Therefore, for single MS, we propose to use multiple PSCs to schedule the sleep of the MS such that the sleep schedule can more accurately capture the QoS of flows and make the MS sleep more. Based on the same motivation, for multiple MSs, we also propose to schedule each MS's sleep according to each of their QoS characteristics. These lead to less energy consumption, more efficient use of bandwidth, and more compact listening windows.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009217818
http://hdl.handle.net/11536/74534
显示于类别:Thesis


文件中的档案:

  1. 781801.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.