标题: | 字典树与基数树之二阶保护点的数量 The Number of 2-Protected Nodes in Tries and PATRICIA Tries |
作者: | 余冠儒 Guan-Ru Yu 符麦克 Michael Fuchs 应用数学系所 |
关键字: | 二阶保护点;数位树;矩;中央极限定理;2-protected nodes;digital trees;moments;central limit theorem |
公开日期: | 2013 |
摘要: | 数位树在电脑科学中的资料结构扮演极其重要的角色,而所谓的二阶保护点在近期则受到相当大的瞩目。举例来说,J. Gaither、Y. Homma、M. Sellke以及M. D. Ward曾探讨随机的字典树之二阶保护点的数量进而求出它的期望值之渐近展开式。不但如此,J. Gaither与M. D. Ward更进一步求出它的变异数之渐近展开式,并猜测它数量的分布会满足中央极限定理。 在这篇论文中,我们的主要目标是用M. Fuchs、黄显贵和V. Zacharovas三人所提出来一个有系统的方法来重新验证(也可说是纠正)他们的结果。经过运算,即便我们得到一个与他们截然不同的展开式,但我们的在数值上与他们的结果却是完全相同的。不但如此,我们更是证实了他们猜想的中央极限定理。事实上,我们证明了一个更一般化的结果就是字典树之内点与二阶保护点的二元中央极限定理。根据这个结果我们不但是证明了J. Gaither与M. D. Ward的猜想,更是直接得知基数树也会满足中央极限定理。最后,我们还算出基数树之二阶保护点数量的期望值及变异数之渐近展开式。 Digital trees are data structures which are of fundamental importance in Computer Science. Recently, so-called 2-protected nodes have attracted a lot of attention. For instance, J. Gaither, Y. Homma, M. Sellke, and M. D. Ward derived an asymptotic expansion for the mean of the number of 2-protected nodes in random tries. Moreover, J. Gaither and M. D. Ward found an asymptotic expansion of the variance and conjectured a central limit theorem. In this thesis, our main goal is to re-derive (and correct) their results by using a systematic method due to M. Fuchs, H.-K. Hwang, and V. Zacharovas. The resulting expressions we obtain are quite different from the paper from J. Gaither, Y. Homma, M. Sellke, and M. D. Ward, but numerically they of course coincide. Moreover, we prove the conjectured central limit theorem from J. Gaither and M. D. Ward. In fact, we prove even a more general result, namely, a bivariate central limit theorem for the number of internal nodes and the number of 2-protected nodes in random tries. From this, not only the conjecture from J. Gaither and M. D. Ward follows but we also obtain a central limit theorem for PATRICIA tries. Finally, we also derive asymptotic expansions of mean and variance for PATRICIA tries. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070152224 http://hdl.handle.net/11536/74595 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.