Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, HLen_US
dc.contributor.authorHuang, KCen_US
dc.contributor.authorRodger, CAen_US
dc.date.accessioned2014-12-08T15:02:02Z-
dc.date.available2014-12-08T15:02:02Z-
dc.date.issued1997-02-01en_US
dc.identifier.issn0364-9024en_US
dc.identifier.urihttp://hdl.handle.net/11536/747-
dc.description.abstractA (k; g)-graph is a k-regular graph with girth g. Let f(k; g) be the smallest integer nu such there exists a (k; g)-graph with nu vertices. A (k; g)-cage is a (k; g)-graph with f(k; g) vertices. In this paper we prove that the cages are monotonic in that f(k; g(1)) < f(k; g(2)) for all k greater than or equal to 3 and 3 less than or equal to g(1) < g(2). We use this to prove that (k; g)-cages are 2-connected,and if k = 3 then their connectivity is k. (C) 1997 John Wiley & Sons, Inc.en_US
dc.language.isoen_USen_US
dc.titleConnectivity of cagesen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF GRAPH THEORYen_US
dc.citation.volume24en_US
dc.citation.issue2en_US
dc.citation.spage187en_US
dc.citation.epage191en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1997WD00900006-
dc.citation.woscount27-
Appears in Collections:Articles


Files in This Item:

  1. A1997WD00900006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.