Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fu, HL | en_US |
dc.contributor.author | Huang, KC | en_US |
dc.contributor.author | Rodger, CA | en_US |
dc.date.accessioned | 2014-12-08T15:02:02Z | - |
dc.date.available | 2014-12-08T15:02:02Z | - |
dc.date.issued | 1997-02-01 | en_US |
dc.identifier.issn | 0364-9024 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/747 | - |
dc.description.abstract | A (k; g)-graph is a k-regular graph with girth g. Let f(k; g) be the smallest integer nu such there exists a (k; g)-graph with nu vertices. A (k; g)-cage is a (k; g)-graph with f(k; g) vertices. In this paper we prove that the cages are monotonic in that f(k; g(1)) < f(k; g(2)) for all k greater than or equal to 3 and 3 less than or equal to g(1) < g(2). We use this to prove that (k; g)-cages are 2-connected,and if k = 3 then their connectivity is k. (C) 1997 John Wiley & Sons, Inc. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Connectivity of cages | en_US |
dc.type | Article | en_US |
dc.identifier.journal | JOURNAL OF GRAPH THEORY | en_US |
dc.citation.volume | 24 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 187 | en_US |
dc.citation.epage | 191 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:A1997WD00900006 | - |
dc.citation.woscount | 27 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.