標題: | Incremental updates of closed frequent itemsets over continuous data streams |
作者: | Li, Hlia-Fu Ho, Chin-Chuan Lee, Suh-Yin 資訊工程學系 Department of Computer Science |
關鍵字: | Data mining;Data streams;Closed frequent itemsets;Single-pass mining;Incremental update |
公開日期: | 1-三月-2009 |
摘要: | Online mining of closed frequent itemsets over streaming data is one of the most important issues in mining data streams. In this paper, we propose an efficient one-pass algorithm, NewMoment to maintain the set of closed frequent itemsets in data streams with a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorithm to reduce the time and memory needed to slide the windows. Experiments show that the proposed algorithm not only attain highly accurate mining results. but also run significant faster and consume less memory than existing algorithm Moment for mining closed frequent itemsets over recent data streams (C) 2007 Elsevier Ltd. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.eswa.2007.12.054 http://hdl.handle.net/11536/7541 |
ISSN: | 0957-4174 |
DOI: | 10.1016/j.eswa.2007.12.054 |
期刊: | EXPERT SYSTEMS WITH APPLICATIONS |
Volume: | 36 |
Issue: | 2 |
起始頁: | 2451 |
結束頁: | 2458 |
顯示於類別: | 期刊論文 |