标题: 应用于无线通讯网路中以网路容量为依据的媒体接取控制
Capacity-Aware Medium Access Control in Wireless Communications Networks
作者: 刘益兴
Liou, Yi-Shing
张仲儒
高荣鸿
Chang, Chung-Ju
Gau, Rung-Hung
电信工程研究所
关键字: 媒体存取控制;容量区域;消息理论;装置对装置通讯;图形着色;速率适应;异质网路;议价赛局理论;服务品质;medium access control;capacity region;information theory;Device-to-Device communications;graph coloring;rate adaptation;heterogeneous networks;bargaining game theory;quality-of-service
公开日期: 2013
摘要: 随着行动装置及智慧型手机的普及,目前的数据流量正以指数的速率成长。因此,我们正面临提高数据传输速率的挑战。在下一个世代(5G)的行动无线通讯里,小型细胞、多封包接收技术以及装置对装置通讯等,都被认为是提高网路吞吐量及频谱效率的有效方法。由于小型细胞的低成本以及快速布署的特性,小型细胞被大量地部署在行动细胞网路中,用来从减轻负载超载的行动细胞网路的数据资料流量。和传统的碰撞通道模型比较,具有多封包接收能力的存取点能够同时成功解出来自多个传送装置同时传送的封包。为了提升小型细胞的容量,设计具有多封包接收能力的媒体存取控制协定是必须的。在细胞网路中的装置对装置通讯,由于装置对装置用户与细胞用户共享相同的资源,细胞网路的频谱效率可以进一步的提高。然而装置对装置通讯会对细胞用户产生干扰。为了降低装置对装置用户对细胞用户的干扰,我们必须谨慎的分配资源给装置对装置用户。除此之外,装置对装置用户之间的干扰也不可被忽视。下一代无线网路由许多本质不同的网路所组成,在这样的整合网路里,涉及网路选择的议题变得相当重要。如果行动用户存取一个不适当的网路,将会导致用户频繁的换手或是频谱的使用效益低落
小型细胞在减轻细胞网路负荷扮演着一个关键的脚色。为了提高小型细胞的容量,我们针对无线网路,为具有多封包接收能力的分散式媒体存取控制提出学习演算法。根据此演算法,节点能够藉由回馈资讯以及其他节点先前使用的策略,调整它的数据传输速率。在对称式的网路中,我们提出了对称式学习演算法来最大化网路吞吐量。在非对称的网路中,为了在吞吐量与公平性之间取得一个良好平衡,我们提出了非对称学习演算法。除此之外,由于在真实的网路环境中可用的数据传输速率的数量是有限的,节点无法使用任意的数据传输速率传送数据,因此我们提出计算有限个最佳数据传输速率的方法。相较于传统的碰撞通道模式,所提出演算法的吞吐量可随着节点数量的上升而增加。
在细胞网路下的装置对装置通讯,彼此距离较远的来源装置应该使用相同的资源来改善频谱效益。而彼此距离较近的来源装置应该使用正交的资源来降低彼此之间的干扰。基于这个原则,我们利用图形理论来计算装置对装置通讯所需要的资源数量。根据需要的资源数量,我们将来源装置分成若干个群组。为了降低对每个群组吞吐量最佳化的运算复杂度,我们提出一个快速的迭代演算法来计算群组里来源装置的数据传输速率。而透过此演算法,与装置对装置用户分享资源的细胞用户的数据传输速率可以获得保证。另外,我们应用消息理论至装置对装置通讯,使得目的装置具有多封包接收的能力。模拟结果显示,利用所提出演算法得到的吞吐量与最佳的网路吞吐量有相当好的近似。
在异质网路中,我们为通话请求提出一个新颖的以议价式赛局为基础的存取网路选择机制,用以降低换手机率与通话阻塞机率。当有一个新的通话请求或是一个换手通话请求出现时,存取网路选择机制就会被触发。为了避免经常性的换手,除了考虑通话请求在一个网路中的停留时间,我们也考虑了通话请求的残余通话时间。首先,通话请求的候选存取网路集合会根据三个限制条件被决定出来。之后,与通话请求关联的行动装置分别与每个候选存取网路进行议价。在一个议价赛局中,双方玩家基于他们的偏好来对候选存取网路的剩余资源议价。从通话请求的观点来看,为了有较好的服务品质,通话请求偏好获取较多的资源。从候选存取网路的观点来看,为了未来能够服务更多的通话,候选存取网路偏好保留较多的资源。最后,通话请求的最终存取网路会根据议价的结果而被选择出来。藉由所提出的基于赛局的存取网路选择机制,通话请求能存取适当的网路,同时,进行中的通话也能得到保护。
As mobile devices and smart phones are popularized, the demand for data traffic is growing exponentially. Therefore, we are facing the challenge of increasing data transmission rates. In the next generation (5G) mobile wireless communications, small cells, multipacket reception (MPR), Device-to-Device (D2D) communications, etc. are considered as promising approaches to enhancing network throughput and spectral efficiency. Due to the low cost and rapid deployment of small cells, small cells are massively deployed in cellular networks to offload mobile data from overloaded cellular networks. Compared to the conventional collision model, an access point with MPR is capable of simultaneously decoding more than one packet from multiple concurrent transmissions. To increase the capacity of small cells, there is a need to design a medium access control (MAC) protocol with MPR for small cells. In D2D communications underlaying cellular networks, D2D users share the same resource with cellular users so that the spectral efficiency of cellular networks can be further improved. However, D2D communications would cause interference to cellular users. To reduce the interference from D2D users to cellular users, D2D users have to be allocated resource cautiously. Moreover, the interference among D2D users cannot be ignored. The next generation wireless networks are composed of essentially different types of networks. In such an integrated network, the topic related to network selection becomes significant. It would lead to frequent handoff or inefficient spectral usage if mobile users incorrectly access to an inappropriate network.

Small cells play a key role of relieving the loading of cellular networks. To improve capacity of small cells, we propose learning algorithms for a distributed medium access control with MPR in wireless networks. Based on the proposed algorithms, a node can dynamically tune its data transmission rates according to feedback information and the previous strategies used by other nodes. For symmetric networks, the proposed symmetric learning algorithms are designed to maximize network throughput. For asymmetric network, the proposed asymmetric learning algorithms are designed to seek a good balance between throughput and fairness. In the real network environment, a node cannot transmit data with an arbitrary data transmission rate since the number of available data transmission rates are finite. Hence, we propose methods to determine a finite number of the optimal data transmission rates. Compared to conventional collision model, the throughput of the proposed algorithms increases as the number of nodes increases.

In D2D communications underlaying cellular networks, source devices that are far away from each other should use identical resource to improve spectral efficiency, while source devices in proximity should use orthogonal resources to reduce interference from each other. On the basis of this principle, we utilize graph theory to calculate the amount of resources required for D2D communications. According to the amount of required resources, source devices are partitioned into subgroups. To reduce the complexity of optimizing throughput for a subgroup, we propose a fast approximation algorithm to calculate data transmission rates of source devices in a subgroup. Based on the proposed algorithm, the data transmission rates of the cellular devices that share the same resources with D2D devices are guaranteed. We adopt network information theory for D2D communications so that destination devices are capable of decoding multiple packets from multiple concurrent transmissions. Simulation results show that the proposed algorithm can reach a good approximation of the globe optimal throughput.

For heterogeneous networks, we propose a novel bargaining-game-based access network selection scheme for call requests in heterogeneous networks to decrease handoff probability and call blocking probability. The access network selection scheme is triggered when a new call request or a handoff call request arrives. To avoid frequent handoff, not only the sojourn time of the call request in a cell but also the residual life time of the call request is taken into consideration. First, the set of candidate access networks is determined for the call request according to three constraints. Then, the mobile device associated with the call request play bargaining games with candidate access networks one by one. In a bargaining game, two players bargain over the residual resource based on their preferences. On the perspective of the call request, the call request prefers to attain larger resource for better quality of service (QoS). On the perspective of the candidate access network, the candidate access network prefers to remain more resource in order to accept more calls in the near future. The final access network is selected based on the bargaining results. Via the proposed game-based access network selection scheme, call requests can access to appropriate networks, and meanwhile the QoS of ongoing calls be can be protected.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079813825
http://hdl.handle.net/11536/75896
显示于类别:Thesis