完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 沈中柱 | en_US |
dc.contributor.author | 邵錦昌 | en_US |
dc.date.accessioned | 2014-12-12T02:45:18Z | - |
dc.date.available | 2014-12-12T02:45:18Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009222511 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/76312 | - |
dc.description.abstract | 很多偏微分方程式都可以轉換成F(D)f•f= 0 這種雙線性方程式 。這篇論文我們試著得到這雙線性方程式的廣義解 , 由於這廣義解擁有Fredholm 行列式值的結構 , 從中我們發展出一個 GLM 積分方程式 , 相較於逆散射方法所得到的GLM 積分方程式 , 我們所得到的積分方程擁有更寬廣的應用空間 | zh_TW |
dc.description.abstract | F(D)f•f= 0 is an important bilinear equation into which many PDEs can be transformed. In this thesis we try to derive the generalized soliton solutions for this bilinear equation. Owing to the structure of Fredholm's determinant of generalized soliton solution we can develop a GLM integral equation whose application is wider than GLM equation produced in inverse scattering method. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 孤粒子 | zh_TW |
dc.subject | 雙線性方程式 | zh_TW |
dc.subject | 逆散射方法 | zh_TW |
dc.subject | soliton | en_US |
dc.subject | bilinear equation | en_US |
dc.subject | inverse scattering method | en_US |
dc.subject | Fredholm's determinant | en_US |
dc.subject | GLM integral equation | en_US |
dc.title | KdV 類型雙線性方程式的廣義Hirota 方法 | zh_TW |
dc.title | Generalized Hirota method of KdV type bilinear equation | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |