完整後設資料紀錄
DC 欄位語言
dc.contributor.author沈中柱en_US
dc.contributor.author邵錦昌en_US
dc.date.accessioned2014-12-12T02:45:18Z-
dc.date.available2014-12-12T02:45:18Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009222511en_US
dc.identifier.urihttp://hdl.handle.net/11536/76312-
dc.description.abstract很多偏微分方程式都可以轉換成F(D)f•f= 0 這種雙線性方程式 。這篇論文我們試著得到這雙線性方程式的廣義解 , 由於這廣義解擁有Fredholm 行列式值的結構 , 從中我們發展出一個 GLM 積分方程式 , 相較於逆散射方法所得到的GLM 積分方程式 , 我們所得到的積分方程擁有更寬廣的應用空間zh_TW
dc.description.abstractF(D)f•f= 0 is an important bilinear equation into which many PDEs can be transformed. In this thesis we try to derive the generalized soliton solutions for this bilinear equation. Owing to the structure of Fredholm's determinant of generalized soliton solution we can develop a GLM integral equation whose application is wider than GLM equation produced in inverse scattering method.en_US
dc.language.isoen_USen_US
dc.subject孤粒子zh_TW
dc.subject雙線性方程式zh_TW
dc.subject逆散射方法zh_TW
dc.subjectsolitonen_US
dc.subjectbilinear equationen_US
dc.subjectinverse scattering methoden_US
dc.subjectFredholm's determinanten_US
dc.subjectGLM integral equationen_US
dc.titleKdV 類型雙線性方程式的廣義Hirota 方法zh_TW
dc.titleGeneralized Hirota method of KdV type bilinear equationen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 251101.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。